1
|
Gao J, Li D, Feng Z, Zhu X, Yang F, Zhang B, Hu M, Wang Y, Feng H, Yu Y, Xie Q, Chen Z, Li Y. Diterpenoid DGT alleviates atopic dermatitis-like responses in vitro and in vivo via targeting IL-4Rα. Biomed Pharmacother 2024; 179:117321. [PMID: 39191027 DOI: 10.1016/j.biopha.2024.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Atopic dermatitis is a common chronic inflammatory skin disease characterized by relapsing eczema and intense itch. DGT is a novel synthetic heterocyclic diterpenoid derived from plants. Its therapeutic potential and mechanism(s) of action are poorly understood. OBJECTIVES We investigated the potent therapeutic effect of DGT on atopic dermatitis, exploring the underlying mechanisms and determining whether DGT is a safe and well-tolerated topical treatment. METHODS We observed anti-inflammatory effects of DGT on tumor necrosis factor-α/interferon-γ-treated human keratinocytes, and anti-allergic effects on immunoglobulin E-sensitized bone marrow-derived mast cells. In vivo, DGT was topically applied to two experimental mouse models of atopic dermatitis: oxazolone-induced sensitization and topically applied calcipotriol. Then the therapeutic effects of DGT were evaluated physiologically and morphologically. Moreover, we performed nonclinical toxicology and safety pharmacology research, including general toxicity, pharmacokinetics, and safety pharmacology on the cardiovascular, respiratory, and central nervous systems. RESULTS In keratinocytes, DGT reduced the expression of inflammatory factors, promoting the expression of barrier functional proteins and tight junctions and maintaining the steady state of barrier function. DGT also inhibited the activation and degranulation of mast cells induced by immunoglobulin E. Moreover, we found that interleukin-4 receptor-α was the possible target of DGT. Meanwhile, DGT had therapeutic effects on oxazolone/calcipotriol-treated mice. Notably, our pharmacology results demonstrated that DGT was safe and nontoxic in our studies. CONCLUSION DGT's potent anti-inflammatory effects and good safety profile suggest that it is a potential candidate for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Jingjing Gao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China; Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Dong Li
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Zhangyang Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoqiang Zhu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Fei Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China; Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Biyan Zhang
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Haimei Feng
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Yunhui Yu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Zijun Chen
- College of traditional Chinese medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Alessandrello C, Sanfilippo S, Minciullo PL, Gangemi S. An Overview on Atopic Dermatitis, Oxidative Stress, and Psychological Stress: Possible Role of Nutraceuticals as an Additional Therapeutic Strategy. Int J Mol Sci 2024; 25:5020. [PMID: 38732239 PMCID: PMC11084351 DOI: 10.3390/ijms25095020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a considerable impact on patients' quality of life. Its etiology is multifactorial and, among the predisposing factors, a role is played by oxidative stress. Pollution, recurrent infections, and psychological stress contribute to oxidative stress, amplifying the production of proinflammatory cytokines and worsening barrier damage. There are various oxidative stress mechanisms involved in the pathogenesis of AD. Moreover, AD often appears to be associated with psychological disorders such as alexithymia, depression, and anxiety due to severe itching and related insomnia, as well as social distress and isolation. The increasing incidence of AD requires the evaluation of additional therapeutic approaches in order to reduce the psychological burden of this condition. Our review aims to evaluate the role of some nutraceuticals in AD treatment and its related psychological comorbidities. The combination of some natural compounds (flavonoids, alkaloids, terpenes, isothiocyanates) with traditional AD treatments might be useful in improving the effectiveness of therapy, by reducing chronic inflammation and preventing flare-ups, and in promoting corticosteroid sparing. In addition, some of these nutraceuticals also appear to have a role in the treatment of psychological disorders, although the underlying oxidative stress mechanisms are different from those already known for AD.
Collapse
Affiliation(s)
| | | | - Paola L. Minciullo
- School and Operative Unit of Allergy and Clinical Immunology, University Hospital of Messina, 98125 Messina, Italy; (C.A.); (S.S.); (S.G.)
| | | |
Collapse
|
3
|
Zhang H, Li Z, Sun Y, Li W, Sun X, Zhang Y, Liu L, Ma S. Mechanisms of action of Shizhenqing granules for eczema treatment: Network pharmacology analysis and experimental validation. Heliyon 2024; 10:e27603. [PMID: 38496849 PMCID: PMC10944262 DOI: 10.1016/j.heliyon.2024.e27603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Background Jiuwan decoction has been used to treat chronic eczema since the Qing Dynasty. According to clinical experience, Shizhenqing granules (SZQG), derived from the Jiuwan decoction, exert beneficial clinical effects on acute eczema and reduce recurrence. Therefore, we elucidated the underlying mechanisms of SZQG through network pharmacology, molecular docking, and experimental validation. Methods The main chemical components of SZQG were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). And the targets of SZQG against eczema were screened out through online databases. Then, the regulatory network map of the "herbal compound-potential target" and the target protein-protein interaction (PPI) network was constructed. The Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using by R language. Additionally, the interaction between the active compounds and the targets was verified by molecular docking technology. Finally, an experiment in vivo was used to verify the effect and mechanism of SZQG on eczema. Results Using UHPLC-MS/MS, 158 main chemical compounds of SZQG were identified, and 72 compounds were selected according to the criteria for further analysis. All 237 potential targets of SZQG in eczema were explored using multiple online databases. The network with 14 core targets was screened out, including STAT3, RELA, TNF, JUN, MAPK3, IL-6, PIK3CA, STAT1, MAPK14, MAPK1, IL-4, NFKBIA, IL1B, and MYC. KEGG analyses indicated that the therapeutic effects of SZQG on eczema were predominantly associated with cytokine-cytokine receptor interaction, TNF, MAPK, NF-κB, toll-like receptor, T cell receptor, and Th1 and Th2 cell differentiation signaling pathways. Furthermore, the good affinity between the core compounds and core targets was verified by molecular docking technology, particularly for RELA and MAPK. Animal experiments revealed that SZQG downregulated MAPK14, RELA, T-bet, and GATA3 mRNA expression, reduced immunoglobulin E (IgE) and interleukin-4 (IL-4) serum concentrations, and improved eczema-like lesions in model rats. Conclusion This study identified potential targets and signaling pathways of SZQG in the treatment of eczema, whereby RELA and MAPK14 may constitute the main therapeutic targets of SZQG in cytokine regulation and reduction of inflammatory responses.
Collapse
Affiliation(s)
- Hairong Zhang
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Zhenbo Li
- Oregon College of Oriental Medicine, Portland, OR, 97209, USA
| | - Yike Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenna Li
- Department of Acupuncture and Minimally Invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Xiao Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yapeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Leilei Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuran Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
4
|
Jeong M, Kwon H, Kim Y, Jin H, Choi GE, Hyun KY. Erigeron annuus Extract Improves DNCB-Induced Atopic Dermatitis in a Mouse Model via the Nrf2/HO-1 Pathway. Nutrients 2024; 16:451. [PMID: 38337735 PMCID: PMC10857527 DOI: 10.3390/nu16030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent inflammatory skin condition resulting from an intricate interplay among genetic, immunological, and environmental factors. Erigeron annuus (EA), an annual winter plant belonging to the family Asteraceae, possesses anti-inflammatory, cytoprotective, and antioxidant activities. In this study, we hypothesized that Erigeron annuus extract (EAE) could be an effective agent for ameliorating AD-like symptoms. To confirm this hypothesis in vitro, we used H2O2-stimulated human keratinocytes (HaCaT cells) to demonstrate that pre-treatment with EAE protected against oxidative stress. HaCaT cells pretreated with EAE and stimulated with H2O2 showed decreased intracellular malondialdehyde content, increased superoxide dismutase activity, and reduced intracellular reactive oxygen species accumulation. To verify the in vivo hypothesis based on the intracellular results, an AD disease mouse model was induced with 1-chloro-2,4-dinitrobenzene (DNCB), and EAE was orally administered at a non-toxic concentration according to the toxicity evaluation results. The results showed that AD disease models in BALB/c mice exhibited reduced ear epidermal thickness, scratching behavior, and mast cell infiltration. In conclusion, our results indicate that EAE has the potential to improve AD by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway.
Collapse
Affiliation(s)
- Myeongguk Jeong
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeeun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Hyunwoo Jin
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Republic of Korea
| |
Collapse
|
5
|
Akash S, Abdelkrim G, Bayil I, Hosen ME, Mukerjee N, Shater AF, Saleh FM, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Tok TT. Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach. J Cell Mol Med 2023; 27:3168-3188. [PMID: 37724615 PMCID: PMC10568677 DOI: 10.1111/jcmm.17940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of PharmacyFaculty of Allied Health Sciences, Daffodil International, UniversityDhakaBangladesh
| | - Guendouzi Abdelkrim
- Laboratory of Chemistry, Synthesis, Properties and Applications. (LCSPA)University of SaidaSaïdaAlgeria
| | - Imren Bayil
- Department of Bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| | - Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Nobendu Mukerjee
- Department of MicrobiologyWest Bengal State UniversityKolkataIndia
- Department of Health SciencesNovel Global Community Educational FoundationHebershamAustralia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesUniversity of TabukTabukSaudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of MedicineUniversity of TabukTabukSaudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Tuğba Taşkin Tok
- Department of Bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| |
Collapse
|
6
|
Bangash Y, Saleem A, Akhtar MF, Anwar F, Akhtar B, Sharif A, Khan MI, Khan A. Pterostilbene reduces the progression of atopic dermatitis via modulating inflammatory and oxidative stress biomarkers in mice. Inflammopharmacology 2023; 31:1289-1303. [PMID: 37069463 DOI: 10.1007/s10787-023-01214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic skin inflammatory disorders requiring continuous treatment and care. Pterostilbene (PTN) belongs to stilbene and is a polyphenolic compound of natural origin. It is similar to resveratrol and has analogous anti-inflammatory, anti-oxidant, and anti-carcinogenic characteristics. This study was intended to evaluate the effect of PTN against atopic dermatitis. The disease was induced by sensitization with 2,4-dinitrochlorobenzene (DNCB) in mice. The standard control group (SCG) received topical 0.1% tacrolimus (TC), whereas three other treatment groups received daily topical PTN at 0.2, 0.6, and 1% w/w for 28 days. Dermatitis scoring, ear thickness, and body weight of animals were weekly determined while other parameters were assessed at the termination of the experiment. PTN reduced the ear weight, skin thickness, and the weight and size of thymus glands and spleen in comparison with diseased animals. PTN also reduced the elevated immunoglobulin E (IgE) level and blood inflammatory cells in diseased mice. The histopathological findings showed a decreased epidermal thickness in PTN-treated groups. Moreover, treatment with PTN improved the amount of oxidative stress markers in the skin of the diseased mice. The expressions of IL-4, IL-6, TNF-α, and NF-κB in the skin of diseased mice were also reduced by PTN. This study concludes that PTN ameliorated the symptoms of atopic dermatitis through the reduction of inflammation, oxidative damage, and inflammatory cytokines in the skin of diseased animals. Therefore, PTN must be further investigated for the treatment of AD complications and other inflammatory skin disorders.
Collapse
Affiliation(s)
- Yasmin Bangash
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
7
|
Ta-Xi-San Suppresses Atopic Dermatitis Involved in Multitarget Mechanism Using Experimental and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8441938. [PMID: 35646146 PMCID: PMC9132654 DOI: 10.1155/2022/8441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022]
Abstract
Atopic dermatitis (AD) is a relapsing and chronic skin inflammation with a common incidence worldwide. Ta-Xi-San (TXS) is a Chinese herbal formula usually used for atopic dermatitis in clinic; however, its active compounds and mechanisms of action are still unclear. Our study was designed to reveal the pharmacological activities, the active compounds, and the pharmacological mechanisms of TXS for atopic dermatitis. Mice were induced by 2,4-dinitrocluorobenzene (DNCB) to build atopic dermatitis model. The pathological evaluation, enzyme-linked immunosorbent assay (ELISA), and hematoxylin and eosin (H&E) assay were performed. The UPLC-Q-Exactive-MSE and network pharmacology analysis were performed to explore active ingredients and therapeutic mechanisms of TXS. TXS treatment decreased levels of immunoglobulin E (IgE), interleukin-4 (IL-4), and tumor necrosis factor-α (TNF-α) in serum induced by DNCB. TXS reduced scratching behavior and alleviated inflammatory pathology of skin and ear. Meanwhile, TXS decreased the spleen index and increased spleen index. The UPLC-Q-Exactive-MSE results showed that 65 compounds of TXS were detected and 337 targets were fished. We collected 1371 AD disease targets, and the compound-target gene network reveled that the top 3 active ingredients were (−)-epigallocatechin gallate, apigenin, and esculetin, and the core target genes were PTGS2, PTGS1, and HSP90AA1. The KEGG pathway and GO analysis showed that TXS remedied atopic dermatitis via PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and Toll-like receptor (TLR) signaling pathway with the regulation of inflammatory response and transcription. Further, we found that the targets of PTGS2 and HSP90AA1 were both elevated in ears and skin of AD model mouse; however, TXS decreased the elevated expressions of PTGS2 and HSP90AA1. Our study revealed that TXS ameliorated AD based on (−)-epigallocatechin gallate, apigenin, and esculetin via targeting PTGS2 and HSP90AA1.
Collapse
|
8
|
Paredes-Rojas A, Palma-Ramos A, Castrillón-Rivera LE, Mendoza-Pérez F, Navarro-González MDC, Arenas-Guzmán R, Castañeda-Sánchez JI, Luna-Herrera J. Keratinocyte Response to Infection with Sporothrix schenckii. J Fungi (Basel) 2022; 8:jof8050437. [PMID: 35628694 PMCID: PMC9143681 DOI: 10.3390/jof8050437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022] Open
Abstract
Sporotrichosis is a subacute, or chronic mycosis caused by traumatic inoculation of material contaminated with the fungus Sporothrix schenckii which is part of the Sporothrix spp. complex. The infection is limited to the skin, although its progression to more severe systemic or disseminated forms remains possible. Skin is the tissue that comes into contact with Sporothrix first, and the role of various cell lines has been described with regard to infection control. However, there is little information on the response of keratinocytes. In this study, we used the human keratinocyte cell line (HaCaT) and evaluated different aspects of infection from modifications in the cytoskeleton to the expression of molecules of the innate response during infection with conidia and yeast cells of Sporothrix schenckii. We found that during infection with both phases of the fungus, alterations of the actin cytoskeleton, formation of membrane protuberances, and loss of stress fibers were induced. We also observed an overexpression of the surface receptors MR, TLR6, CR3 and TLR2. Cytokine analysis showed that both phases of the fungus induced the production of elevated levels of the chemokines MCP-1 and IL-8, and proinflammatory cytokines IFN-α, IFN-γ and IL-6. In contrast, TNF-α production was significant only with conidial infection. In late post-infection, cytokine production was observed with immunoregulatory activity, IL-10, and growth factors, G-CSF and GM-CSF. In conclusion, infection of keratinocytes with conidia and yeast cells of Sporothrix schenckii induces an inflammatory response and rearrangements of the cytoskeleton.
Collapse
Affiliation(s)
- Araceli Paredes-Rojas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.P.-R.); (L.E.C.-R.); (F.M.-P.)
| | - Alejandro Palma-Ramos
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.P.-R.); (L.E.C.-R.); (F.M.-P.)
| | - Laura Estela Castrillón-Rivera
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.P.-R.); (L.E.C.-R.); (F.M.-P.)
| | - Felipe Mendoza-Pérez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.P.-R.); (L.E.C.-R.); (F.M.-P.)
| | - María del Carmen Navarro-González
- Laboratorio de Investigación en Enfermedades Reumáticas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Roberto Arenas-Guzmán
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico;
| | - Jorge Ismael Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.P.-R.); (L.E.C.-R.); (F.M.-P.)
- Correspondence: (J.I.C.-S.); (J.L.-H.); Tel.: +52-55-54-83-70-00 (ext. 2803) (J.I.C.-S.); +52-55-57-29-63-00 (ext. 62371) (J.L.-H.)
| | - Julieta Luna-Herrera
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Correspondence: (J.I.C.-S.); (J.L.-H.); Tel.: +52-55-54-83-70-00 (ext. 2803) (J.I.C.-S.); +52-55-57-29-63-00 (ext. 62371) (J.L.-H.)
| |
Collapse
|
9
|
Wang CC, Hsiao CY, Hsu YJ, Ko HH, Chang DC, Hung CF. Anti-Inflammatory Effects of Cycloheterophyllin on Dinitrochlorobenzene-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092610. [PMID: 35565961 PMCID: PMC9099738 DOI: 10.3390/molecules27092610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (eczema) is a condition that makes skin red and itchy. Though common in children, the condition can occur at any age. Atopic dermatitis is persistent (chronic) and tends to recur periodically. It may be accompanied by asthma or hay fever. No cure has been found for eczema. Therefore, it is very important to develop ingredients that aid the prevention and treatment of atopic dermatitis. Cycloheterophyllin is derived from Artocarpus heterophyllus and has antioxidant and anti-inflammatory activities. However, it still is not understood whether cycloheterophyllin is an anti-atopic dermatitis agent. Keratinocytes (HaCaT cells) and BALB/c mice for inducing AD-like cutaneous lesions were used to evaluate the potential of cycloheterophyllin as an anti-atopic dermatitis agent. The release of pro-inflammatory cytokines induced by treatment of TNF-α/IFN-γ was reduced after pretreatment with cycloheterophyllin. The inhibitory effects could be a contribution from the effect of the MAP kinases pathway. Moreover, the symptoms of atopic dermatitis (such as red skin and itching) were attenuated by pretreatment with cycloheterophyllin. Epidermal hyperplasia and mast cell infiltration were decreased in the histological section. Finally, damage to the skin barrier was also found to recover through assessment of transepidermal water loss. Taken together, prenylflavone-cycloheterophyllin from Artocarpus heterophyllus is a potential anti-atopic dermatitis ingredient that can be used in preventing or treating the condition.
Collapse
Affiliation(s)
- Chia-Chen Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Department of Dermatology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology, Taoyuan 33303, Taiwan;
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Horng-Huey Ko
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Correspondence: ; Tel.: +886-2-29053911
| |
Collapse
|
10
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
11
|
Kwon Y, Choi Y, Kim M, Jeong MS, Jung HS, Jeoung D. HDAC6 and CXCL13 Mediate Atopic Dermatitis by Regulating Cellular Interactions and Expression Levels of miR-9 and SIRT1. Front Pharmacol 2021; 12:691279. [PMID: 34588978 PMCID: PMC8473914 DOI: 10.3389/fphar.2021.691279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) has been known to regulate inflammatory diseases. The role of HDAC6 in allergic skin inflammation has not been studied. We studied the role of HDAC6 in atopic dermatitis (AD) and the mechanisms associated with it. The decreased expression or chemical inhibition of HDAC6 suppressed AD by decreasing autophagic flux and cellular features of AD. AD increased expression levels of the Th1 and Th2 cytokines, but decreased expression levels of forkhead box P3 (FoxP3) and interleukin-10 (IL-10) in an HDAC6-dependent manner. CXC chemokine ligand 13 (CXCL13), which was increased in an HDAC6-depenednt manner, mediated AD. MiR-9, negatively regulated by HDAC6, suppressed AD by directly regulating the expression of sirtuin 1 (SIRT1). The downregulation or inhibition of SIRT1 suppressed AD. Experiments employing culture medium and transwell suggested that cellular interactions involving mast cells, keratinocytes, and dermal fibroblast cells could promote AD; HDAC6 and CXCL13 were found to be necessary for these cellular interactions. Mouse recombinant CXCL13 protein increased HDAC6 expression in skin mast cells and dermal fibroblast cells. CXCL13 protein was found to be present in the exosomes of DNCB-treated skin mast cells. Exosomes of DNCB-treated skin mast cells enhanced invasion potentials of keratinocytes and dermal fibroblast cells and increased expression levels of HDAC6, SIRT1 and CXCL13 in keratinocytes and dermal fibroblast cells. These results indicate that HDAC6 and CXCL13 may serve as targets for the developing anti-atopic drugs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Yunji Choi
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| |
Collapse
|