1
|
Li Y, Zhang Y, He X, Guo Z, Yang N, Bai G, Zhao J, Xu D. The Mitochondrial Blueprint: Unlocking Secondary Metabolite Production. Metabolites 2024; 14:711. [PMID: 39728492 DOI: 10.3390/metabo14120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial metabolism plays a pivotal role in regulating the synthesis of secondary metabolites, which are crucial for the survival and adaptation of organisms. These metabolites are synthesized during specific growth stages or in response to environmental stress, reflecting the organism's ability to adapt to changing conditions. Mitochondria, while primarily known for their role in energy production, directly regulate secondary metabolite biosynthesis by providing essential precursor molecules, energy, and reducing equivalents necessary for metabolic reactions. Furthermore, they indirectly influence secondary metabolism through intricate signaling pathways, including reactive oxygen species (ROS), metabolites, and redox signaling, which modulate various metabolic processes. This review explores recent advances in understanding the molecular mechanisms governing mitochondrial metabolism and their regulatory roles in secondary metabolite biosynthesis, which highlights the involvement of transcription factors, small RNAs, and post-translational mitochondrial modifications in shaping these processes. By integrating current insights, it aims to inspire future research into mitochondrial regulatory mechanisms in Arabidopsis thaliana, Solanum tuberosum, Nicotiana tabacum, and others that may enhance their secondary metabolite production. A deeper understanding of the roles of mitochondria in secondary metabolism could contribute to the development of new approaches in biotechnology applications.
Collapse
Affiliation(s)
- Yang Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Yujia Zhang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Xinyu He
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Ning Yang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Guohui Bai
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563099, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| |
Collapse
|
2
|
Chandrasekaran U, Park S, Kim K, Byeon S, Han AR, Lee YS, Oh NH, Chung H, Choe H, Kim HS. Energy deprivation affects nitrogen assimilation and fatty acid biosynthesis leading to leaf chlorosis under waterlogging stress in the endangered Abies koreana. TREE PHYSIOLOGY 2024; 44:tpae055. [PMID: 38775218 DOI: 10.1093/treephys/tpae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Energy deprivation triggers various physiological, biochemical and molecular changes in plants under abiotic stress. We investigated the oxidative damages in the high altitude grown conifer Korean fir (Abies koreana) exposed to waterlogging stress. Our experimental results showed that waterlogging stress led to leaf chlorosis, 35 days after treatment. A significant decrease in leaf fresh weight, chlorophyll and sugar content supported this phenotypic change. Biochemical analysis showed a significant increase in leaf proline, lipid peroxidase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical content of waterlogged plants. To elucidate the molecular mechanisms, we conducted RNA-sequencing (RNA-seq) and de novo assembly. Using RNA-seq analysis approach and filtering (P < 0.05 and false discovery rate <0.001), we obtained 134 unigenes upregulated and 574 unigenes downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis placed the obtained differentially expressed unigenes in α-linoleic pathway, fatty acid degradation, glycosis, glycolipid metabolism and oligosaccharide biosynthesis process. Mapping of unigenes with Arabidopsis using basic local alignment search tool for nucleotides showed several critical genes in photosynthesis and carbon metabolism downregulated. Following this, we found the repression of multiple nitrogen (N) assimilation and nucleotide biosynthesis genes including purine metabolism. In addition, waterlogging stress reduced the levels of polyunsaturated fatty acids with a concomitant increase only in myristic acid. Together, our results indicate that the prolonged snowmelt may cause inability of A. koreana seedlings to lead the photosynthesis normally due to the lack of root intercellular oxygen and emphasizes a detrimental effect on the N metabolic pathway, compromising this endangered tree's ability to be fully functional under waterlogging stress.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghee Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ah Reum Han
- Division of Basic Research, National Institute of Ecology, 1210 Geumgang-ro, Seocheon-gun 33657, Republic of Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, 1210 Geumgang-ro, Seocheon-gun 33657, Republic of Korea
| | - Neung-Hwan Oh
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Environmental Planning Institute, Seoul National University, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Haegeun Chung
- Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyeyeong Choe
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Jia X, An S, Yin W, Huang J, Jiang X. Nanozyme-Based Regulation of Cellular Metabolism and Their Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301810. [PMID: 37017586 DOI: 10.1002/adma.202301810] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Metabolism is the sum of the enzyme-dependent chemical reactions, which produces energy in catabolic process and synthesizes biomass in anabolic process, exhibiting high similarity in mammalian cell, microbial cell, and plant cell. Consequently, the loss or gain of metabolic enzyme activity greatly affects cellular metabolism. Nanozymes, as emerging enzyme mimics with diverse functions and adjustable catalytic activities, have shown attractive potential for metabolic regulation. Although the basic metabolic tasks are highly similar for the cells from different species, the concrete metabolic pathway varies with the intracellular structure of different species. Here, the basic metabolism in living organisms is described and the similarities and differences in the metabolic pathways among mammalian, microbial, and plant cells and the regulation mechanism are discussed. The recent progress on regulation of cellular metabolism mainly including nutrient uptake and utilization, energy production, and the accompanied redox reactions by different kinds of oxidoreductases and their applications in the field of disease therapy, antimicrobial therapy, and sustainable agriculture is systematically reviewed. Furthermore, the prospects and challenges of nanozymes in regulating cell metabolism are also discussed, which broaden their application scenarios.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Wenbo Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Jiahao Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Liu Y, Zhao M, Shi J, Yang S, Xue Y. Genome-Wide Identification of AhMDHs and Analysis of Gene Expression under Manganese Toxicity Stress in Arachis hypogaea. Genes (Basel) 2023; 14:2109. [PMID: 38136931 PMCID: PMC10743186 DOI: 10.3390/genes14122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Malate dehydrogenase (MDH) is one kind of oxidation-reduction enzyme that catalyzes the reversible conversion of oxaloacetic acid to malic acid. It has vital functions in plant development, photosynthesis, abiotic stress responses, and so on. However, there are no reports on the genome-wide identification and gene expression of the MDH gene family in Arachis hypogaea. In this study, the MDH gene family of A. hypogaea was comprehensively analyzed for the first time, and 15 AhMDH sequences were identified. According to the phylogenetic tree analysis, AhMDHs are mainly separated into three subfamilies with similar gene structures. Based on previously reported transcriptome sequencing results, the AhMDH expression quantity of roots and leaves exposed to manganese (Mn) toxicity were explored in A. hypogaea. Results revealed that many AhMDHs were upregulated when exposed to Mn toxicity, suggesting that those AhMDHs might play an important regulatory role in A. hypogaea's response to Mn toxicity stress. This study lays foundations for the functional study of AhMDHs and further reveals the mechanism of the A. hypogaea signaling pathway responding to high Mn stress.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
5
|
Cai Y, Zhai Z, Blanford J, Liu H, Shi H, Schwender J, Xu C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. THE NEW PHYTOLOGIST 2022; 236:1128-1139. [PMID: 35851483 DOI: 10.1111/nph.18392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
6
|
Zhang R, Guan X, Yang M, Law YS, Voon CP, Yan J, Sun F, Lim BL. Overlapping Functions of the Paralogous Proteins AtPAP2 and AtPAP9 in Arabidopsis thaliana. Int J Mol Sci 2021; 22:7243. [PMID: 34298863 PMCID: PMC8303434 DOI: 10.3390/ijms22147243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), which is anchored to the outer membranes of chloroplasts and mitochondria, affects carbon metabolism by modulating the import of some preproteins into chloroplasts and mitochondria. AtPAP9 bears a 72% amino acid sequence identity with AtPAP2, and both proteins carry a hydrophobic motif at their C-termini. Here, we show that AtPAP9 is a tail-anchored protein targeted to the outer membrane of chloroplasts. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that both AtPAP9 and AtPAP2 bind to a small subunit of rubisco 1B (AtSSU1B) and a number of chloroplast proteins. Chloroplast import assays using [35S]-labeled AtSSU1B showed that like AtPAP2, AtPAP9 also plays a role in AtSSU1B import into chloroplasts. Based on these data, we propose that AtPAP9 and AtPAP2 perform overlapping roles in modulating the import of specific proteins into chloroplasts. Most plant genomes contain only one PAP-like sequence encoding a protein with a hydrophobic motif at the C-terminus. The presence of both AtPAP2 and AtPAP9 in the Arabidopsis genome may have arisen from genome duplication in Brassicaceae. Unlike AtPAP2 overexpression lines, the AtPAP9 overexpression lines did not exhibit early-bolting or high-seed-yield phenotypes. Their differential growth phenotypes could be due to the inability of AtPAP9 to be targeted to mitochondria, as the overexpression of AtPAP2 on mitochondria enhances the capacity of mitochondria to consume reducing equivalents.
Collapse
Affiliation(s)
- Renshan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Xiaoqian Guan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Meijing Yang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Chia Pao Voon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Junran Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|