1
|
Hejna M, Dell'Anno M, Liu Y, Rossi L, Aksmann A, Pogorzelski G, Jóźwik A. Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Sci Rep 2024; 14:21044. [PMID: 39251803 PMCID: PMC11383966 DOI: 10.1038/s41598-024-71961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
In swine farming, animals develop diseases that require the use of antibiotics. In-feed antibiotics as growth promoters have been banned due to the increasing concern of antimicrobial resistance. Seaweeds offer bioactive molecules with antibacterial and antioxidant properties. The aim was to estimate the in vitro properties of seaweed extracts: Ascophyllum nodosum (AN), Palmaria palmata (PP), Ulva lactuca (UL), and 1:1 mixes (ANPP, ANUL, PPUL). Escherichia coli strains were used to test for growth inhibitory activity, and chemical-based assays were performed for antioxidant properties. The treatments were 2 (with/without Escherichia coli) × 2 (F4 + and F18 +) × 5 doses (0, 1.44, 2.87, 5.75, 11.50, and 23.0 mg/mL). Bacteria were supplemented with seaweed extracts, and growth was monitored. The antioxidant activity was assessed with 6 doses (0, 1, 50, 100, 200, 500, and 600 mg/mL) × 6 compounds using two chemical assays. Data were evaluated through SAS. The results showed that AN and UL significantly inhibited (p < 0.05) the growth of F4 + and F18 +. PP and mixes did not display an inhibition of the bacteria growth. AN, PP, UL extracts, and mixes exhibited antioxidant activities, with AN showing the strongest dose-response. Thus, AN and UL seaweed extracts reveal promising antibacterial and antioxidant effects and may be candidates for in-feed additives.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland.
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Yanhong Liu
- Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Pogorzelski
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| |
Collapse
|
2
|
Ma Y, Zhang Y, Wang Y, Qiao Z, Liu Y, Xia X. PhoP/PhoQ Two-Component System Contributes to Intestinal Inflammation Induced by Cronobacter sakazakii in Neonatal Mice. Foods 2024; 13:2808. [PMID: 39272573 PMCID: PMC11394756 DOI: 10.3390/foods13172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen capable of causing severe infections in newborns. The PhoP/PhoQ two-component system exerts a significant influence on bacterial virulence. This study aimed to investigate the impact of the PhoP/PhoQ system on intestinal inflammation in neonatal mice induced by C. sakazakii. Neonatal mice were infected orally by C. sakazakii BAA-894 (WT), a phoPQ-gene-deletion strain (ΔphoPQ), and a complementation strain (ΔphoPQC), and the intestinal inflammation in the mice was monitored. Deletion of the phoPQ gene reduced the viable count of C. sakazakii in the ileum and alleviated intestinal tissue damage. Moreover, caspase-3 activity in the ileum of the WT- and ΔphoPQC-infected mice was significantly elevated compared to that of the ΔphoPQ and control groups. ELISA results showed elevated levels of TNF-α and IL-6 in the ileum of the mice infected with WT and ΔphoPQC. In addition, deletion of the phoPQ gene in C. sakazakii resulted in a down-regulation of inflammatory genes (IL-1β, TNF-α, IL-6, NF-κB p65, TLR4) within the ileum and decreased inflammation by modulating the TLR4/NF-κB pathway. It is suggested that targeting the PhoP/PhoQ two-component system could be a potential strategy for mitigating C. sakazakii-induced neonatal infections.
Collapse
Affiliation(s)
- Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingying Zhang
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Yuting Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Ferlisi F, De Ciucis CG, Trabalza-Marinucci M, Fruscione F, Mecocci S, Franzoni G, Zinellu S, Galarini R, Razzuoli E, Cappelli K. Olive Mill Waste-Water Extract Enriched in Hydroxytyrosol and Tyrosol Modulates Host-Pathogen Interaction in IPEC-J2 Cells. Animals (Basel) 2024; 14:564. [PMID: 38396532 PMCID: PMC10886184 DOI: 10.3390/ani14040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig intestine and their potential application as feed supplements in farm animals such as pigs.
Collapse
Affiliation(s)
- Flavia Ferlisi
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | | | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.F.); (S.Z.)
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.F.); (S.Z.)
| | - Roberta Galarini
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| |
Collapse
|
4
|
Angane M, Swift S, Huang K, Perera J, Chen X, Butts CA, Quek SY. Synergistic antimicrobial interaction of plant essential oils and extracts against foodborne pathogens. Food Sci Nutr 2024; 12:1189-1206. [PMID: 38370080 PMCID: PMC10867478 DOI: 10.1002/fsn3.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
Essential oils (EOs) and plant extracts have demonstrated inhibitory activity against a wide range of pathogenic bacteria. In this study, the chemical composition of manuka, kanuka, peppermint, thyme, lavender, and feijoa leaf and peel EOs and feijoa peel and leaf extracts were analyzed, and their antimicrobial activity against Escherichia coli, Salmonella enterica Typhimurium, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes were determined. The results showed that the major compounds varied among different EOs and extracts, with menthol in peppermint EO, thymol and carvacrol in thyme EO, linalool in lavender EO, β-caryophyllene in feijoa EO, and flavones in feijoa extract being the most prevalent. The study found that while EOs/extracts had antimicrobial activity alone, no individual EO/extract was highly effective against all tested species. Therefore, their combinations were tested to identify those that could broaden the spectrum of activity and act synergistically. The checkerboard method was applied to assess the possible synergism between the paired combinations of EOs/extract. The peppermint/thyme, peppermint/lavender, and peppermint/feijoa peel extract combinations exhibited a synergistic effect against E. coli and L. monocytogenes, with the peppermint/thyme and peppermint/feijoa peel extract combinations being the most effective against all five pathogens. Time-to-kill kinetics assays demonstrated that peppermint/thyme and peppermint/feijoa peel extract combinations achieved complete eradication of E. coli within 10-30 min and L. monocytogenes within 4-6 h. This study provides a promising approach to developing a natural alternative for food preservation using synergistic combinations of EOs/extracts, which could potentially reduce the required dosage and broaden their application in food products as natural preservatives.
Collapse
Affiliation(s)
- Manasweeta Angane
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
- Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand
- The New Zealand Institute for Plant & Food Research LimitedPalmerston NorthNew Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand
| | - Kang Huang
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
| | - Janesha Perera
- Faculty of Medical and Health Sciences, School of Medical SciencesThe University of AucklandAucklandNew Zealand
| | - Xiao Chen
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
| | - Christine A. Butts
- The New Zealand Institute for Plant & Food Research LimitedPalmerston NorthNew Zealand
| | - Siew Young Quek
- Food Science, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
- Riddet InstituteNew Zealand Centre of Research Excellence for Food ResearchPalmerston NorthNew Zealand
| |
Collapse
|
5
|
Goudarzi MA, Radfar M, Goudarzi Z. Peppermint as a promising treatment agent in inflammatory conditions: A comprehensive systematic review of literature. Phytother Res 2024; 38:187-195. [PMID: 37850332 DOI: 10.1002/ptr.8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Inflammation, a type of the body's defense against injury or infection, causes many chronic disorders including diabetes, cardiovascular disease, and cancer. Therefore, discovering natural compounds with numerous biological activities for the management of inflammation is highly recommended. Out of natural compounds, peppermint and its main component, menthol, has been suggested to possess antiinflammatory potential. Four databases including Web of Sciences, PubMed, Scopus, and Embase were searched to identify articles about peppermint and its antiinflammatory effects up to March 2023. Out of 3805 records screened, 14 articles met the study criteria. The evidence reviewed here proposed peppermint as an antiinflammatory agent. Peppermint may suppress inflammation by activating the AMP-activated protein kinase/unc-51 like kinase 1/nuclear factor-E2 associated factor 2 autophagy pathway, downregulating extracellular signal-regulated kinase-nuclear factor kappa B and mitogen activated protein kinases pathways, attenuating oxidative stress, suppressing the production of pro-inflammatory mediators and nitric oxide, and inducing the production of antiinflammatory prostaglandins. Due to the promising antiinflammatory effects of peppermint and the lack of human studies in this regard, future randomized clinical trials examining the effects of peppermint on inflammation and its related maladies are warranted.
Collapse
Affiliation(s)
| | - Mohammad Radfar
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Goudarzi
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
6
|
Taha NM, Zalat RS, Khaled E, Elmansory BM. Evaluation of the therapeutic efficacy of some essential oils in experimentally immunosuppressed mice infected with Cryptosporidium parvum. J Parasit Dis 2023; 47:733-743. [PMID: 38009149 PMCID: PMC10667177 DOI: 10.1007/s12639-023-01621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 11/28/2023] Open
Abstract
Cryptosporidiosis is a serious intestinal disease affecting mal-nourished children and immunocompromised individuals with severe fatal diarrhea. Our present work was done to evaluate the possible curative effects of different essential oils (Mint, Thyme, Chamomile and Basil) on Cryptosporidium parvum (C. parvum) in vivo compared with nitazoxanide (NTZ). Seventy immunosuppressed white Albino male mice were allocated in 7 groups as follows: group I infected and not treated (Positive control), group II (GII) treated with NTZ, group III (GIII) treated with Mint essential oil, group IV (GIV) treated with Thyme essential oil, group V (GV) treated with Chamomile essential oil, group VI (GVI) treated with Basil essential oil and group VII (GVII) naïve not infected mice (Negative control). Evaluation was done using parasitological, histopatholgical, serological as well as biochemical methods. All study groups revealed significant reduction (P value < 0.01) in the mean number of C. parvum oocysts in stool. Results of GII were the best with 87.7% reduction in the oocysts count followed by GIII (77.9%), GIV (74.7%), GVI (68.2%) and lastly GV (67.2%). Improvement of the histopathological damage in the small intestine was shown in treated groups. All treated mice showed significant upregulation in the interferon gamma (IFN-γ) levels, significant reduction in the malondialdehyde (MDA) levels and increase in superoxide dismutase (SOD) levels (P value < 0.0001). It is concluded that Mint, Thyme, Chamomile and Basil oils showed promising anti-cryptosporidial, anti-inflammatory and antioxidant functions.
Collapse
Affiliation(s)
- Noha Madbouly Taha
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Sayed Zalat
- Department of Parasitology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Eman Khaled
- Department of Surgical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma M. Elmansory
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Yi M, Cao Z, Zhou J, Ling Y, Zhang Z, Cao H. Multi-Omics Analysis of the Mechanism of Mentha Haplocalyx Briq on the Growth and Metabolic Regulation of Fattening Sheep. Animals (Basel) 2023; 13:3461. [PMID: 38003078 PMCID: PMC10668852 DOI: 10.3390/ani13223461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mentha haplocalyx Briq (MHB) and its components have been proven to improve the growth performance of livestock and poultry. The aim of this experiment was to investigate the effects of MHB addition on growth performance, rumen and fecal microbiota, rumen fluid, serum and urine metabolism, and transcriptomics of rumen epithelial cells in meat sheep. Twelve Hu sheep were selected for the experiment and fed with basic diet (CON) and a basal diet supplemented with 80 g/kg DM of Mentha haplocalyx Briq (MHB). The experimental period was 10 weeks with the first 2 weeks as the pre-trial period. The results showed that compared with the CON group, the average daily weight gain of meat sheep in the MHB group increased by 20.1%; the total volatile fatty acid (VFA) concentration significantly increased (p < 0.05); The thickness of the cecal mucosal layer was significantly reduced (p < 0.01), while the thickness of the colonic mucosal layer was significantly increased (p < 0.05), the length of ileal villi significantly increased (p < 0.01), the thickness of colonic mucosal layer and rectal mucosal muscle layer significantly increased (p < 0.05), and the thickness of cecal mucosal layer significantly decreased (p < 0.05); The serum antioxidant capacity has increased. At the genus level, the addition of MHB changed the composition of rumen and fecal microbiota, increased the relative abundance of Paraprevotella, Alloprevotella, Marinilabilia, Saccharibacteria_genera_incertae_sedis, Subdivision5_genera_incertae_sedis and Ornatilinea in rumen microbiota, and decreased the relative abundance of Blautia (p < 0.05). The relative abundance of Prevotella, Clostridium XlVb and Parasutterella increased in fecal microbiota, while the relative abundance of Blautia and Coprococcus decreased (p < 0.05). There were significant differences in the concentrations of 105, 163, and 54 metabolites in the rumen, serum, and urine between the MHB group and the CON group (p < 0.05). The main metabolic pathways of the differences were pyrimidine metabolism, taurine and taurine metabolism, glyceride metabolism, and pentose phosphate pathway (p < 0.05), which had a significant impact on protein synthesis and energy metabolism. The transcriptome sequencing results showed that differentially expressed genes were mainly enriched in immune regulation, energy metabolism, and protein modification. Therefore, adding MHB improved the growth performance of lambs by altering rumen and intestinal microbiota, rumen, serum and urine metabolomics, and transcriptome.
Collapse
Affiliation(s)
- Mingliang Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
| | - Jialu Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Ezzaky Y, Elmoslih A, Silva BN, Bonilla-Luque OM, Possas A, Valero A, Cadavez V, Gonzales-Barron U, Achemchem F. In vitro antimicrobial activity of extracts and essential oils of Cinnamomum, Salvia, and Mentha spp. against foodborne pathogens: A meta-analysis study. Compr Rev Food Sci Food Saf 2023; 22:4516-4536. [PMID: 37615998 DOI: 10.1111/1541-4337.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Essential oils (EOs) are a class of natural products that exhibit potent antimicrobial properties against a broad spectrum of bacteria. Inhibition diameters (IDs) and minimum inhibitory concentrations (MICs) are the typical measures of antimicrobial activity for extracts and EOs obtained from Cinnamomum, Salvia, and Mentha species. This study used a meta-analytical regression analysis to investigate the correlation between ID and MIC measurements and the variability in antimicrobial susceptibility tests. By utilizing pooled ID models, this study revealed significant differences in foodborne pathogens' susceptibility to extracts, which were dependent on both the plant species and the methodology employed (p < .05). Cassia showed the highest efficacy against Salmonella spp., exhibiting a pooled ID of 26.24 mm, while cinnamon demonstrated the highest efficacy against Bacillus cereus, with a pooled ID of 23.35 mm. Mint extract showed the greatest efficacy against Escherichia coli and Staphylococcus aureus. Interestingly, cinnamon extract demonstrated the lowest effect against Shiga toxin-producing E. coli, with a pooled ID of only 8.07 mm, whereas its EOs were the most effective against this bacterial strain. The study found that plant species influenced the MIC, while the methodology did not affect MIC measurements (p > .05). An inverse correlation between ID and MIC measurements was identified (p < .0001). These findings suggest that extracts and EOs obtained from Cinnamomum, Salvia, and Mentha spp. have the potential to inhibit bacterial growth. The study highlights the importance of considering various factors that may influence ID and MIC measurements when assessing the effectiveness of antimicrobial agents.
Collapse
Affiliation(s)
- Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Abdelkhaleq Elmoslih
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Olga María Bonilla-Luque
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Arícia Possas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
9
|
Luo Z, Xu Y, Qiu L, Lv S, Zeng C, Tan A, Ou D, Song X, Yang J. Optimization of ultrasound-assisted extraction based on response surface methodology using HPLC-DAD for the analysis of red clover ( Trifolium pretense L.) isoflavones and its anti-inflammatory activities on LPS-induced 3D4/2 cell. Front Vet Sci 2023; 10:1279178. [PMID: 37854095 PMCID: PMC10580807 DOI: 10.3389/fvets.2023.1279178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Trifolium pratense L. has anti-inflammatory, antioxidant, cardiovascular disease prevention, and estrogen-like effects. The existing method for the assay of effective components is commonly based on a spectrophotometer, which could not meet the requirement of quality control. Furthermore, although there have been many studies on the anti-inflammation effect of red clover, a few have been reported on the regulatory effect of red clover isoflavones (RCI) on lipopolysaccharide (LPS)-induced inflammatory response in porcine alveolar macrophages (3D4/2 cells), and its mechanism of action is still unclear. Methods The main components of RCI including daidzein, genistein, and biochanin A were accurately quantified by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) after optimizing the extraction process through response surface methodology. The anti-inflammatory potential of RCI was carried out by detecting the level of inflammatory cytokines and mRNA expression of related genes. Furthermore, its anti-inflammatory mechanism was explored by investigating two signaling pathways (NF-κB and MAPK). Results The optimal extraction conditions of RCI were as follows: the concentration of ethanol is 86% and the solid-liquid ratio is 1:29, with the herb particle size of 40 mesh sieve. Under the optimal conditions, the total extraction of target components of RCI was 2,641.469 μg/g. The RCI could significantly suppress the production and expression of many pro-inflammatory cytokines. The results of the Western blot revealed that RCI dramatically reduced the expression of p65, p-p65, IκB-α, p38, and p-p38. These results are associated with the suppression of the signal pathway of p38 MAPK, and on the contrary, activating the NF-κB pathway. Collectively, our data demonstrated that RCI reversed the transcription of inflammatory factors and inhibited the expression of p65, p-p65, IκB-α, and p38, indicating that RCI had excellent anti-inflammatory properties through disturbing the activation of p38 MAPK and NF-κB pathways. Conclusion The extraction conditions of RCI were optimized by HPLC-DAD combined with response surface methodology, which will contribute to the quality control of RCI. RCI had anti-inflammatory effects on the LPS-induced 3D4/2 cells. Its mechanism is to control the activation of NF-κB and p38 MAPK pathways, thereby reducing the expression of inflammatory-related genes and suppressing the release of cytokines.
Collapse
Affiliation(s)
- Zhengqin Luo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yidan Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Longxin Qiu
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology in Fujian Province, Longyan University, Longyan, Fujian, China
| | - Shiming Lv
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Zeng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Aijuan Tan
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Rungqu P, Oyedeji O, Gondwe M, Oyedeji A. Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa. Molecules 2023; 28:5294. [PMID: 37513168 PMCID: PMC10385469 DOI: 10.3390/molecules28145294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Pelargonium species are native to South Africa, and they have a long history in medicinal use. This study aimed to extract essential oils from different parts of P. peltatum, determine the chemical composition of the essential oils, and assess the essential oils' biological potential as analgesic and anti-inflammatory agents. The essential oils were obtained by hydro-distilling different parts of P. peltatum, and the essential profile was determined by GC-FID and GC-MS. The analgesic activity of the essential oil was determined by using a tail immersion in hot water method in rats, whereas the anti-inflammatory activity of the essential oils was assessed according to right hind paw oedema induced by egg albumin; the three doses selected for each experiment were 100, 200, and 400 mg/kg. According to the GC-FID and GC-MS analysis, camphene (3.6-33.4%), α-terpineol (4.8-19.1%), α-thujone (1.5-15.6%), piperitone (0.9-12.2%), linalool (1.6-11.7%), myrcene (5.2-10.7%), germacrene D (3.7-10.4%), β-caryophyllene (1.2-9.5%), β-cadinene (3.4-6.7%), and β-bourbonene (4.2-6.2%) were some of the major compounds identified in the oil. P. peltatum essential oils demonstrated analgesic activity by increasing pain latency in hot water; furthermore, in an inflammation test, the essential oil reduced the egg-albumin-induced paw oedema in both the first and second phases. Therefore, the current findings suggest that P. peltatum essential oils have analgesic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Opeoluwa Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Mavuto Gondwe
- Department of Human Biology, Faculty of Health Science, Walter Sisulu University, Mthatha 5117, South Africa
| | - Adebola Oyedeji
- Department of Chemistry, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| |
Collapse
|
11
|
Wendner D, Schott T, Mayer E, Teichmann K. Beneficial Effects of Phytogenic Feed Additives on Epithelial Barrier Integrity in an In Vitro Co-Culture Model of the Piglet Gut. Molecules 2023; 28:molecules28031026. [PMID: 36770693 PMCID: PMC9920886 DOI: 10.3390/molecules28031026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Industrial farming of livestock is increasingly focused on high productivity and performance. As a result, concerns are growing regarding the safety of food and feed, and the sustainability involved in their production. Therefore, research in areas such as animal health, welfare, and the effects of feed additives on animals is of significant importance. In this study, an in vitro co-culture model of the piglet gut was used to investigate the effects of two phytogenic feed additives (PFA) with similar compositions. Intestinal porcine epithelial cells (IPEC-J2) were co-cultivated with peripheral blood mononuclear cells (PBMC) to model the complex porcine gut environment in vitro. The effects of treatments on epithelial barrier integrity were assessed by means of transepithelial electrical resistance (TEER) in the presence of an inflammatory challenge. Protective effects of PFA administration were observed, depending on treatment duration and the model compartment. After 48 h, TEER values were significantly increased by 12-13% when extracts of the PFA were applied to the basolateral compartment (p < 0.05; n = 4), while no significant effects on cell viability were observed. No significant differences in the activity of a PFA based mainly on pure chemical compounds versus a PFA based mainly on complex, natural essential oils, and extracts were found. Overall, the co-culture model was used successfully to investigate and demonstrate beneficial effects of PFAs on intestinal epithelial barrier function during an inflammatory challenge in vitro. In addition, it demonstrates that the two PFAs are equivalent in effect. This study provides useful insights for further research on porcine gut health status even without invasive in vivo trials.
Collapse
|
12
|
Park S, Kovanda L, Sokale AO, Barri A, Liu Y. In vitro investigation of monoglycerides and zinc glycinate: anti-inflammatory and epithelial barrier function. J Anim Sci 2023; 101:skae372. [PMID: 39657118 DOI: 10.1093/jas/skae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The objectives of this study were to investigate the in vitro immune-modulatory effects of monoglycerides and zinc glycinate with porcine alveolar macrophages (PAM) and their impact on epithelial barrier integrity using the intestinal porcine enterocyte cell line (IPEC-J2). Cell viability was assessed using a Vybrant MTT assay to determine the appropriate dose range of monoglyceride blend (C4, C8, and C10) and zinc glycinate. In experiment 1, IPEC-J2 cells (5 × 105 cells/mL) were seeded and treated with each compound (monoglycerides: 0, 25, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 2, 5, 12.5, 25, and 50 µg/mL). Transepithelial electrical resistance (TEER) was measured by Ohm's law method at 0 h (before treatment) and at 24, 48, and 72 h posttreatment. In experiment 2, PAM were collected from 6 clinically healthy piglets (7 wk of age) and seeded at 106 cells/mL. After incubation, the cells were treated with each compound and/or lipopolysaccharide (LPS). The experimental design was a 2 × 6 factorial arrangement with 2 doses of LPS (0 or 1 μg/mL) and 6 doses of each compound (monoglycerides: 0, 50, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 25, 50, 100, 250, and 500 µg/mL). Cell supernatants were collected to analyze the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) by enzyme-linked immunosorbent assay kits. Data were analyzed by ANOVA using PROC MIXED of SAS with a randomized complete block design. IPEC-J2 cells treated with 250 or 1,000 μg/mL of monoglycerides, or 5 μg/mL of zinc glycinate had increased (P < 0.05) TEER values at 48 or 72 h posttreatment, compared with control. The LPS challenge increased (P < 0.05) the production of TNF-α and IL-1β from PAM. In the non-challenge group, 50 or 100 μg/mL of monoglycerides stimulated (P < 0.05) TNF-α and IL-1β production from PAMs. Treatment with 25 or 100 μg/mL of zinc glycinate also enhanced (P < 0.05) TNF-α production from PAM. In LPS-treated PAM, 1,000 μg/mL of monoglycerides increased (P < 0.05) IL-1β production, while zinc glycinate suppressed (P < 0.0001) the secretion of TNF-α and IL-1β at the doses of 100, 250, and 500 μg/mL. In conclusion, the results of this in vitro study indicate that monoglycerides positively affect the barrier function of the epithelium, while zinc glycinate may have strong immune regulatory benefits. Future animal studies will be required to verify their impacts on animal gut health, systemic immunity, and growth performance.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Pelvan E, Serhatlı M, Karaoğlu Ö, Karadeniz B, Pembeci Kodolbaş C, Aslı Öncü N, Çakırca G, Damarlı E, Başdoğan G, Mergen Duymaz G, Emir Akyıldız İ, Düz G, Acar S, Özhan Y, Sipahi H, Charehsaz M, Aydın A, Yesilada E, Alasalvar C. Development of propolis and essential oils containing oral/throat spray formulation against SARS-CoV-2 infection. J Funct Foods 2022; 97:105225. [PMID: 35996534 PMCID: PMC9385731 DOI: 10.1016/j.jff.2022.105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
A broad range of evidence has confirmed that natural products and essential oils might have the potential to suppress COVID-19 infection. Therefore, this study aimed to develop an oral/throat spray formulation for prophylactic use in the oral cavity or help treatment modalities. Based on a reference survey, several essential oils, a cold-pressed oil, and propolis were selected, and cytotoxicity and antiviral activity of each component and the developed spray formulation were examined against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using Vero E6 cells. Anti-inflammatory, antimicrobial, and analgesic activities as well as mutagenicity and anti-mutagenicity of the formulation were analysed. Forty-three phenolics were identified in both propolis extract and oral/throat spray. The spray with 1:640-fold dilution provided the highest efficacy and the cytopathic effect was delayed for 54 h at this dilution, and the antiviral activity rate was 85.3%. A combination of natural products with essential oils at the right concentrations can be used as a supplement for the prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Müge Serhatlı
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Öznur Karaoğlu
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Bülent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | | | - Neşe Aslı Öncü
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Gamze Çakırca
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Emel Damarlı
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | - Günay Başdoğan
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | | | | | - Gamze Düz
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | - Sezer Acar
- Altıparmak Gıda San. & Tic. A.Ş, Çekmeköy-Istanbul, Turkey
| | - Yağmur Özhan
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Ataşehir-Istanbul, Turkey
| | | |
Collapse
|
14
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
15
|
Frazzini S, Scaglia E, Dell’Anno M, Reggi S, Panseri S, Giromini C, Lanzoni D, Sgoifo Rossi CA, Rossi L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11050992. [PMID: 35624856 PMCID: PMC9137800 DOI: 10.3390/antiox11050992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Algae and cyanobacteria, other than their nutritional value, possess different beneficial properties, including antioxidant and antimicrobial ones. Therefore, they can be considered functional ingredients in animal feed and natural substitutes for antibiotics. The aim of this study was to evaluate the antioxidant and antimicrobial capacity against porcine O138 E. coli of Ascophyllum nodosum, Chlorella vulgaris, Lithotamnium calcareum, Schizochytrium spp. as algal species and Arthrospira platensis as cyanobacteria. The antioxidant capacity was determined by ABTS Radical Cation Decolorization Assay testing at three different concentrations (100%; 75%; 50%). The growth inhibition effect of the extracts at concentrations of 25%, 12.5%, 6%, 3% and 1.5% against porcine O138 E. coli was genetically characterized by PCR to detect the presence of major virulence factors; this was evaluated by following the microdilution bacterial growth method. The ABTS assay disclosed that Ascophyllum nodosum was the compound with the major antioxidant properties (57.75 ± 1.44 percentage of inhibition; p < 0.0001). All the extracts tested showed growth inhibition activity at a concentration of 25%. Among all extracts, A. nodosum was the most effective, showing a significant growth inhibition of E. coli; in particular, the log10 cells/mL of E. coli used as a control resulted in a significantly higher concentration of 25% and 12.5% after 4 h (8.45 ± 0.036 and 7.22 ± 0.025 log10 cells/mL, respectively; p < 0.005). This also suggests a dose-dependent relationship between the inhibitory activity and the concentration. Also, a synergistic effect was observed on antioxidant activity for the combination of Ascophyllum nodosum and Lithotamnium calcareum (p < 0.0001). Moreover, to determine if this combination could affect the viability of the IPEC-J2 cells under the normal or stress condition, the viability and membrane integrity were tested, disclosing that the combination mitigated the oxidative stress experimentally induced by increasing the cell viability. In conclusion, the results obtained highlight that the bioactive compounds of algal species are able to exert antioxidant capacity and modulate O138 E. coli growth. Also, the combination of Ascophyllum nodosum and Lithotamnium calcareum species can enhance their bioactivity, making them a promising functional feed additive and a suitable alternative to antibiotics.
Collapse
|
16
|
Marks H, Grześkowiak Ł, Martinez-Vallespin B, Dietz H, Zentek J. Porcine and Chicken Intestinal Epithelial Cell Models for Screening Phytogenic Feed Additives—Chances and Limitations in Use as Alternatives to Feeding Trials. Microorganisms 2022; 10:microorganisms10030629. [PMID: 35336204 PMCID: PMC8951747 DOI: 10.3390/microorganisms10030629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Numerous bioactive plant additives have shown various positive effects in pigs and chickens. The demand for feed additives of natural origin has increased rapidly in recent years to support the health of farm animals and thus minimize the need for antibiotics and other drugs. Although only in vivo experiments can fully represent their effect on the organism, the establishment of reliable in vitro methods is becoming increasingly important in the goal of reducing the use of animals in experiments. The use of cell models requires strict control of the experimental conditions so that reliability and reproducibility can be achieved. In particular, the intestinal porcine epithelial cell line IPEC-J2 represents a promising model for the development of new additives. It offers the possibility to investigate antioxidative, antimicrobial, anti- or pro-proliferative and antiviral effects. However, the use of IPEC-J2 is limited due to its purely epithelial origin and some differences in its morphology and functionality compared to the in vivo situation. With regard to chickens, the development of a reliable intestinal epithelial cell model has attracted the attention of researchers in recent years. Although a promising model was presented lately, further studies are needed to enable the standardized use of a chicken cell line for testing phytogenic feed additives. Finally, co-cultivation of the currently available cell lines with other cell lines and the development of organoids will open up further application possibilities. Special emphasis was given to the IPEC-J2 cell model. Therefore, all publications that investigated plant derived compounds in this cell line were considered. The section on chicken cell lines is based on publications describing the development of chicken intestinal epithelial cell models.
Collapse
Affiliation(s)
- Hannah Marks
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572 Bremerhaven, Germany;
- Correspondence:
| | - Łukasz Grześkowiak
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| | - Beatriz Martinez-Vallespin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| | - Heiko Dietz
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572 Bremerhaven, Germany;
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| |
Collapse
|