1
|
Luo PY, Zou JR, Chen T, Zou J, Li W, Chen Q, Cheng L, Zheng LY, Qian B. Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis. Asian J Androl 2025; 27:166-176. [PMID: 39028624 PMCID: PMC11949458 DOI: 10.4103/aja202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Collapse
Affiliation(s)
- Pei-Yue Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Li-Ying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| |
Collapse
|
2
|
Yuan R, Xu H, Wang M, Guo L, Yao Y, Zhang X, Wang X. Promoting the transition from pyroptosis to apoptosis in endothelial cells: a novel approach to alleviate methylglyoxal-induced vascular damage. J Transl Med 2025; 23:170. [PMID: 39930472 PMCID: PMC11809013 DOI: 10.1186/s12967-025-06195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Methylglyoxal (MGO)-induced cell death in vascular endothelial cells (VECs) plays a critical role in the progression of diabetic vascular complications (DVCs). Previous studies have shown that MGO can induce inflammatory pyroptosis, leading to VEC damage. However, the underlying mechanism remains unclear, and effective interventions are yet to be developed. METHODS Human umbilical vein endothelial cells (HUVECs) were used for in vitro experiments. Cell death modes were assessed through morphological observations. Mechanistic investigations were performed using immunofluorescence, flow cytometry, Western blotting, and ELISA. Inhibitors and adenoviruses were employed to validate the mechanisms. Vascular organoids in conjunction with AngioTool plug-in assays were used to evaluate VEC damage and angiogenic capacity. Mouse blood pressure was measured using the tail-cuff method, and vascular morphology was examined through hematoxylin and eosin (H&E) staining as well as immunofluorescence staining. Data were analyzed using the GraphPad Prism software. RESULTS Our study revealed that MGO induces pyroptosis in VECs via the Caspase3/gasdermin E (GSDME) pathway. Furthermore, the saponin monomer 13 of dwarf lilyturf tuber (DT-13), inhibited MGO-induced pyroptosis and promoted the generation of apoptotic bodies, facilitating the transition from pyroptosis to apoptosis. Mechanistically, DT-13 suppressed the Caspase3-mediated cleavage of GSDME and non-muscle myosin heavy chain IIA (NMMHC IIA), while increasing the phosphorylation of myosin light chain 2 (MLC2), which facilitated apoptotic body formation. Additionally, DT-13 was shown to mitigate VEC damage, inhibit angiogenesis, reduce vascular remodeling, and alleviate MGO-induced hypertension. CONCLUSIONS This study uncovers a novel mechanism through which MGO induces VEC damage, highlighting the therapeutic significance of the transition from pyroptosis to apoptosis in this process. These findings suggest potential therapeutic strategies for managing diabetic angiopathy. Furthermore, DT-13 emerges as a promising compound for therapeutic intervention, offering new possibilities for clinical applications.
Collapse
Affiliation(s)
- Ruqiang Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Mingqi Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Lina Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yang Yao
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xiaoru Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Wang H, Wang X, Feng Y, Zhang K, Peng M, Wu X, Li Y. Salidroside Reduced Ca 2+-CaM-CAMKII-Dependent eNOS/NO Activation to Decrease Endothelial Cell Injury Induced by Cold Combined with Hypoxia. Cell Biochem Biophys 2024; 82:3477-3487. [PMID: 39020087 DOI: 10.1007/s12013-024-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
To investigate vascular endothelium damage in rats exposed to hypoxic and cold and the effect of salidroside in protecting against this damage. A rat isolated aortic ring hypoxia/cold model was established to simulate exposure to hypoxic and cold. The levels of endothelial cell injury markers were measured by ELISA. TEM was performed to observe the ultrastructure of vascular ring endothelial cells. In vitro assays were performed to verify the effect of salidroside on endothelial cells. CCK-8 and flow cytometry were performed to analyze endothelial cell survival and apoptosis, respectively. Ca2+ concentrations were measured by Flow cytometry, and the expressions of NOS/NO pathway-related proteins were measured by WB. Endothelial cell damage, mitochondrial swelling, autophagy, and apoptosis were increased in the hypoxia group and hypoxia/hypothermia group. All of these effects were inhibited by salidroside. Moreover, exposure to cold combined with hypoxia reduced the NO levels, Ca2+ concentrations and NOS/NO pathway-related protein expression in the hypoxia group and hypoxia/hypothermia group. Salidroside treatment reversed these changes. Salidroside protected against endothelial cell injury induced by cold and hypoxia through reduction of Ca2+-CaM-CAMKII-dependent eNOS/NO activation, thereby preventing mitochondrial damage, reducing ROS levels, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hongjin Wang
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Xianzhen Wang
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Yanping Feng
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Kewei Zhang
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Maodongzhi Peng
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Xiaowei Wu
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Yi Li
- Department of Burn and Plastic Surgery, Qinghai University Affiliated Hospital, Xining, 810001, China.
| |
Collapse
|
4
|
Deng X, Wu Q, Liu Y. Eucommia ulmoidesOliv. leaves flavonoids attenuate methylglyoxal-induced endothelial cell apoptosis in vitro and in vivo by upregulating AKT-Nrf2 signaling and downregulating oxidative stress. Food Sci Nutr 2024; 12:7938-7953. [PMID: 39479661 PMCID: PMC11521679 DOI: 10.1002/fsn3.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 08/04/2024] [Indexed: 11/02/2024] Open
Abstract
Methylglyoxal (MGO) triggers oxidative stress responses in vascular endothelial cells, leading to apoptosis linked to diabetic vascular complications. Total flavonoids of Eucommia ulmoides leaves (TFEL) display antioxidant activity, yet its prevention of MGO-induced apoptosis and mechanisms are unclear. Our study used western blotting and ELISA to evaluate protein levels and enzyme activities. Cell viability and apoptosis were evaluated using CCK8 assay and PE Annexin V/7-AAD double staining. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured using fluorescence probes. Vascular pathological changes and apoptosis were analyzed through H&E and TUNEL staining. In vitro, MGO-stimulated human umbilical vein endothelial cells (HUVECs) were treated with varying TFEL concentrations. Our results demonstrated that TFEL significantly enhanced cell viability, reduced apoptosis, downregulated caspase-3 activity, and Bax/Bcl-2 ratio. Moreover, TFEL markedly suppressed MGO-induced ROS and malondialdehyde (MDA) production while restoring antioxidant enzyme activity and MMP. TFEL pretreatment promoted the expression of p-Akt, Nrf2, and HO-1 proteins. Pharmacological inhibition of p-Akt significantly suppressed the upregulation of Nrf2 and HO-1 protein levels mediated by TFEL. Consistently, pharmacological inhibition of Nrf2 or p-Akt partially abrogated the protective effects of TFEL against MGO-induced damage in HUVECs. In vivo studies revealed that TFEL (100 and 200 mg/kg) partially restored antioxidant capacity and reduced aortic thickness and apoptosis in MGO-injured mice. In conclusion, the findings indicate that TFEL mitigates MGO-induced apoptosis via activation of p-Akt/Nrf2/HO-1 and scavenging of oxidative stress, highlighting its potential in diabetic vascular complication management.
Collapse
Affiliation(s)
- Xin Deng
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Qianfeng Wu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Youping Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
5
|
Wang Y, Chen J, Zheng Y, Jiang J, Wang L, Wu J, Zhang C, Luo M. Glucose metabolite methylglyoxal induces vascular endothelial cell pyroptosis via NLRP3 inflammasome activation and oxidative stress in vitro and in vivo. Cell Mol Life Sci 2024; 81:401. [PMID: 39269632 PMCID: PMC11399538 DOI: 10.1007/s00018-024-05432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Methylglyoxal (MGO), a reactive dicarbonyl metabolite of glucose, plays a prominent role in the pathogenesis of diabetes and vascular complications. Our previous studies have shown that MGO is associated with increased oxidative stress, inflammatory responses and apoptotic cell death in endothelial cells (ECs). Pyroptosis is a novel form of inflammatory caspase-1-dependent programmed cell death that is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome. Recent studies have shown that sulforaphane (SFN) can inhibit pyroptosis, but the effects and underlying mechanisms by which SFN affects MGO-induced pyroptosis in endothelial cells have not been determined. Here, we found that SFN prevented MGO-induced pyroptosis by suppressing oxidative stress and inflammation in vitro and in vivo. Our results revealed that SFN dose-dependently prevented MGO-induced HUVEC pyroptosis, inhibited pyroptosis-associated biochemical changes, and attenuated MGO-induced morphological alterations in mitochondria. SFN pretreatment significantly suppressed MGO-induced ROS production and the inflammatory response by inhibiting the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathway by activating Nrf2/HO-1 signaling. Similar results were obtained in vivo, and we demonstrated that SFN prevented MGO-induced oxidative damage, inflammation and pyroptosis by reversing the MGO-induced downregulation of the NLRP3 signaling pathway through the upregulation of Nrf2. Additionally, an Nrf2 inhibitor (ML385) noticeably attenuated the protective effects of SFN on MGO-induced pyroptosis and ROS generation by inhibiting the Nrf2/HO-1 signaling pathway, and a ROS scavenger (NAC) and a permeability transition pore inhibitor (CsA) completely reversed these effects. Moreover, NLRP3 inhibitor (MCC950) and caspase-1 inhibitor (VX765) further reduced pyroptosis in endothelial cells that were pretreated with SFN. Collectively, these findings broaden our understanding of the mechanism by which SFN inhibits pyroptosis induced by MGO and suggests important implications for the potential use of SFN in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Liu X, Keyhani NO, Liu H, Zhang Y, Xia Y, Cao Y. Glyoxal oxidase-mediated detoxification of reactive carbonyl species contributes to virulence, stress tolerance, and development in a pathogenic fungus. PLoS Pathog 2024; 20:e1012431. [PMID: 39078845 PMCID: PMC11315307 DOI: 10.1371/journal.ppat.1012431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Glox in the insect pathogenic fungus, Metarhizium acridum, is highly expressed in mycelia and during formation of infection structures (appressoria), with the enzyme localizing to the cell membrane. MaGlox targeted gene disruption mutants showed RCS and ROS accumulation, resulting in cell toxicity, induction of apoptosis and increased autophagy, inhibiting normal fungal growth and development. The ability of the MaGlox mutant to scavenge RCS was significantly reduced, and the mutant exhibited increased susceptibility to aldehydes, oxidative and cell wall perturbing agents but not toward osmotic stress, with altered cell wall contents. The ΔMaGlox mutant was impaired in its ability to penetrate the host cuticle and evade host immune defense resulting in attenuated pathogenicity. Overexpression of MaGlox promoted fungal growth and conidial germination, increased tolerance to H2O2, but had little to other phenotypic effects. Transcriptomic analyses revealed downregulation of genes related to cell wall synthesis, conidiation, stress tolerance, and host cuticle penetration in the ΔMaGlox mutant. These findings demonstrate that MaGlox-mediated scavenging of RCS is required for virulence, and contributes to normal fungal growth and development, stress resistance.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Hong Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yue Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yueqing Cao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Liccardo M, Sapio L, Perrella S, Sirangelo I, Iannuzzi C. Genistein Prevents Apoptosis and Oxidative Stress Induced by Methylglyoxal in Endothelial Cells. Molecules 2024; 29:1712. [PMID: 38675531 PMCID: PMC11052514 DOI: 10.3390/molecules29081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Glycolytic overload promotes accumulation of the highly reactive dicarbonyl compounds, resulting in harmful conditions called dicarbonyl stress. Methylglyoxal (MG) is a highly reactive dicarbonyl species and its accumulation plays a crucial pathophysiological role in diabetes and its vascular complications. MG cytotoxicity is mediated by reactive oxygen species (ROS) generation, a key event underlying the intracellular signaling pathways leading to inflammation and apoptosis. The identification of compounds able to inhibit ROS signaling pathways and counteract the MG-induced toxicity is a crucial step for developing new therapeutic strategies in the treatment of diabetic vascular complications. In this study, the effect of genistein, a natural soybean isoflavone, has been evaluated on MG-induced cytotoxicity in human endothelial cells. Our results show that genistein is able to counteract the MG-induced apoptosis by restraining ROS production, thus inhibiting the MAPK signaling pathways and caspase-3 activation. These findings identify a beneficial role for genistein, providing new insights for its potential clinical applications in preserving endothelial function in diabetic vascular complications.
Collapse
Affiliation(s)
| | | | | | - Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.L.); (L.S.); (S.P.); (C.I.)
| | | |
Collapse
|
8
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
9
|
Zhang S, Zhang S, Li YY, Zhang Y, Wang H, Chen Y, Sun M. Umbelliferone protects against methylglyoxal-induced HUVECs dysfunction through suppression of apoptosis and oxidative stress. J Appl Toxicol 2023; 43:490-499. [PMID: 36170298 DOI: 10.1002/jat.4399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022]
Abstract
Methylglyoxal (MGO), a cytotoxic metabolite of glycolysis, can cause endothelial cells impairment, which is tightly associated with diabetic vascular complication. Umbelliferone, a derivative of coumarin, participates in various pharmacological activities. This study aimed to determine the effectiveness of umbelliferone in MGO-induced apoptosis and oxidative stress in endothelial cells. In this study, it has been indicated that umbelliferone inhibited MGO-induced human umbilical vein endothelial cells (HUVECs) cytotoxicity, apoptosis, Bax/Bcl-2 protein ratio, the activity of cleaved-caspase-3, and mitochondrial membrane potential loss. Furthermore, we found that umbelliferone inhibited MGO-induced activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in HUVECs. In addition, umbelliferone could suppress oxidative stress, as evidenced by decrease of reactive oxygen species and malondialdehyde (MDA) generation, and increase of superoxide dismutase and glutathione peroxidase contents. Moreover, we found that umbelliferone can activate Nrf2/HO-1 signaling. Importantly, silencing of Nrf2 signaling clearly eliminated the anti-oxidative stress of umbelliferone, whereas umbelliferone pretreatment had no effect on Nrf2 overexpressing HUVECs. Altogether, this study suggested that umbelliferone pretreatment has a protective effect on MGO-induced endothelial cell dysfunction through inhibiting apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Shunxiao Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Li
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Wang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Chen
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Liao R, Zhao P, Wu J, Fang K. Salidroside protects against intestinal barrier dysfunction in septic mice by regulating IL‑17 to block the NF‑κB and p38 MAPK signaling pathways. Exp Ther Med 2023; 25:89. [PMID: 36684648 PMCID: PMC9849854 DOI: 10.3892/etm.2023.11788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome, mainly caused by infection or suspected infectious factors. The intestine is not only one of the most easily involved organs in the course of sepsis, but also the dynamic organ for the course of sepsis. The present study investigated the protective effect and mechanism of salidroside on intestinal barrier dysfunction of septic mice. Briefly, C57BL/6 mice were used to establish a septic model and then administered with salidroside. The ileum tissues of mice were examined by histopathological examination. Fluorescein isothiocyanate-dextran concentration was measured. IL-17, IL-6, IL-13 and TNF-α levels in ileum tissues and NF-κB and p38 MAPK activations were detected by ELISA and the expressions of NF-κB p65 and p38 MAPK protein with their phosphorylation and intestinal tight junction proteins were gauged by western blotting. The above assays were performed again to investigate the effect of anti-IL-17A and salidroside (160 mg/kg) alone or in combination. The septic model induced the ileum tissue injury, increased intestinal permeability and TNF-α, IL-17 and IL-6 levels, activated NF-κB and p38 MAPK pathways, promoted the expressions of NF-κB p65 and p38 MAPK and their phosphorylation, while suppressing the levels of IL-13 and intestinal tight junction proteins. Salidroside and anti-IL-17A partially reversed the above effects of septic model, which in combination further strengthened the reversing effect. Collectively, salidroside protected against intestinal barrier dysfunction in septic mice by downregulating IL-17 level to inhibit NF-κB and p38 MAPK signaling pathways, thus providing a new treatment direction.
Collapse
Affiliation(s)
- Rongxin Liao
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China,Correspondence to: Dr Rongxin Liao, Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Road, Haizhu, Guangzhou, Guangdong 510310, P.R. China
| | - Peng Zhao
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Jianming Wu
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Keren Fang
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| |
Collapse
|
11
|
The Effect of Anthocyanins from Dioscorea alata L. on Antioxidant Properties of Perinatal Hainan Black Goats and Its Possible Mechanism in the Mammary Gland. Animals (Basel) 2022; 12:ani12233320. [PMID: 36496841 PMCID: PMC9735849 DOI: 10.3390/ani12233320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: The mammary glands of the perinatal goats are susceptible to reactive oxygen species (ROS) leading to oxidative injury. Although Dioscorea alata L. is rich in anthocyanins with high safety and excellent free-radical-scavenging ability, the effect and mechanism of Dioscorea alata L. anthocyanins (DAC) on the antioxidant capacity of the black Hainan goat has been the subject of few studies to date; (2) Methods: For this reason, feeding experiments were performed by feeding experimental diets, and the pre-protective capacity of DAC on goat mammary epithelial cells was explored on the basis of the established model of H2O2 injury; (3) Results: As well as altering rumen fermentation parameters in perinatal female goats, dietary challenge also improves antioxidant capacity in their blood and milk. thereby enhancing children's antioxidant capacity and increasing their resistance to oxidative stress. However, we also found that DAC pretreatment was capable of activating both Nrf2 and MAPK/JNK pathways, which results in enhanced antioxidase activity and elimination of ROS; (4) Conclusions: Together, these findings suggest that DAC may have a pre-protective role on perinatal Hainan black goats through the regulation of Nrf2 and MAPK/JNK pathways in GMEC.
Collapse
|
12
|
Xue MT, Sheng WJ, Song X, Shi YJ, Geng ZJ, Shen L, Wang R, Lü HZ, Hu JG. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neurosci Ther 2022; 28:1059-1071. [PMID: 35403332 PMCID: PMC9160450 DOI: 10.1111/cns.13839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Background Inflammatory reactions induced by spinal cord injury (SCI) are essential for recovery after SCI. Atractylenolide III (ATL‐III) is a natural monomeric herbal bioactive compound that is mainly derived in Atractylodes macrocephala Koidz and has anti‐inflammatory and neuroprotective effects. Objective Here, we speculated that ATL‐III may ameliorate SCI by modulating microglial/macrophage polarization. In the present research, we focused on investigating the role of ATL‐III on SCI in rats and explored the potential mechanism. Methods The protective and anti‐inflammatory effects of ATL‐III on neuronal cells were examined in a rat SCI model and lipopolysaccharide (LPS)‐stimulated BV2 microglial line. The spinal cord lesion area, myelin integrity, and surviving neurons were assessed by specific staining. Locomotor function was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale, grid walk test, and footprint test. The activation and polarization of microglia/macrophages were assessed by immunohistofluorescence and flow cytometry. The expression of corresponding inflammatory factors from M1/M2 and the activation of relevant signaling pathways were assessed by Western blotting. Results ATL‐III effectively improved histological and functional recovery in SCI rats. Furthermore, ATL‐III promoted the transformation of M1 into M2 and attenuated the activation of microglia/macrophages, further suppressing the expression of corresponding inflammatory mediators. This effect may be partly mediated by inhibition of neuroinflammation through the NF‐κB, JNK MAPK, p38 MAPK, and Akt pathways. Conclusion This study reveals a novel effect of ATL‐III in the regulation of microglial/macrophage polarization and provides initial evidence that ATL‐III has potential therapeutic benefits in SCI rats.
Collapse
Affiliation(s)
- Meng-Tong Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Wen-Jie Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Xue Song
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Yu-Jiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Zhi-Jun Geng
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China.,Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
13
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|