1
|
Ahles S, Joris PJ, Plat J. Short-term Aronia melanocarpa extract supplementation improves cognitive performance: a randomized, double-blind, placebo-controlled cross-over study in healthy young adults. Eur J Nutr 2024; 63:1545-1553. [PMID: 38656355 PMCID: PMC11329521 DOI: 10.1007/s00394-024-03381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Evidence on the potential beneficial effects of anthocyanin-rich foods and supplements on cognitive performance is mainly based on acute or long-term studies in older adults. However, short-term studies focusing on a younger population are lacking. Therefore, short-term effects of Aronia melanocarpa extract (AME) supplementation on cognitive performance were investigated in healthy young adults. Potential underlying mechanisms were also addressed. METHODS A randomized, double-blind, placebo-controlled cross-over study was performed involving 35 apparently healthy young adults. Participants consumed AME (180 mg anthocyanins/day) or a placebo for 1 week, separated by at least 2 weeks of wash-out. Cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Furthermore, arterial stiffness (carotid-to-femoral pulse wave velocity), retinal microvascular calibers (fundus photography), and serum brain-derived neurotrophic factor (BDNF) concentrations were measured at baseline and after 1 week. RESULTS Participants had a mean age of 25 ± 4 years and an average BMI of 23.4 ± 2.7 kg/m2. Compliance was excellent and the study product was well-tolerated. As compared to placebo, movement time was significantly reduced by 4.8% within the five-choice reaction time test after 1 week of AME supplementation (intervention effect: - 12 ms; p < 0.05). Memory and executive function did however not change. Serum BDNF concentrations were significantly higher after AME supplementation as compared to placebo (+ 5.7%; intervention effect: 1.8 ng/mL; p < 0.05). However, arterial stiffness and retinal microvascular calibers were not affected. CONCLUSION Short-term AME supplementation beneficially affected cognitive performance as attention and psychomotor speed improved. Serum BDNF concentrations were increased, but vascular function markers were not affected. CLINICAL TRIAL REGISTRATION The study was registered on Clinical Trials under NCT03793777 on January 4th, 2019.
Collapse
Affiliation(s)
- Sanne Ahles
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- BioActor BV, Gaetano Martinolaan 50, 6229 GS, Maastricht, The Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Chen TJ, Wang DC, Liu PC, Hung HS, Cheng TL. Enhanced expression of activity-regulated cytoskeleton-associated protein in the medial prefrontal cortex is involved in working memory performance. Kaohsiung J Med Sci 2024; 40:553-560. [PMID: 38623867 DOI: 10.1002/kjm2.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Working memory (WM) is a cognitive function important for guiding the on-going or upcoming behavior. A memory-related protein Arc (activity-regulated cytoskeleton-associated protein) is implicated in long-term memory consolidation. Recent evidence further suggests the involvement of hippocampal Arc in spatial WM. The medial prefrontal cortex (mPFC) is a key brain region mediating WM. However, the role of mPFC Arc in WM is still uncertain. To investigate whether mPFC Arc protein is involved in WM performance, delayed non-match to sample (DNMS) T-maze task was performed in rats with or without blocking new synthesis of mPFC Arc. In DNMS task, a 10-s or 30-s delay between the sample run and the choice run was given to evaluate WM performance. To block new Arc protein synthesis during the DNMS task, Arc antisense oligodeoxynucleotides (ODNs) were injected to the bilateral mPFC. The results show that, in rats without surgery for cannula implantation and subsequent intracerebral injection of ODNs, WM was functioning well during the DNMS task with a delay of 10 s but not 30 s, which was accompanied with a significantly increased level of mPFC Arc protein, indicating a possible link between enhanced Arc protein expression and the performance of WM. After preventing the enhancement of mPFC Arc protein expression with Arc antisense ODNs, rat's WM performance was impaired. These findings support enhanced mPFC Arc protein expression playing a role during WM performance.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Dean-Chuan Wang
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chun Liu
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Shan Hung
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
4
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
5
|
Hack W, Gladen-Kolarsky N, Chatterjee S, Liang Q, Maitra U, Ciesla L, Gray NE. Gardenin A improves cognitive and motor function in A53T-α-syn mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564401. [PMID: 37961574 PMCID: PMC10634905 DOI: 10.1101/2023.10.27.564401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6 mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced cortical and hippocampal levels of pSyn and attenuated the reduction in TH expression in the striatum. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models. Significance Statement The polymethoxyflavone Gardenin A can improve cognitive and motor function and attenuate both increases in phosphorylated alpha synuclein and reductions in tyrosine hydroxylase expression in A53T alpha synuclein overexpressing mice. These effects may be related to activation of the NRF2-regulated antioxidant response and downregulation of NFkB-dependent inflammatory response by Gardenin A in treated animals. The study also showed excellent brain bioavailability of Gardenin A and modifications of the lipid profile, possibly through interactions between Gardenin A with the lipid bilayer, following oral administration. The study confirms neuroprotective activity of Gardenin A previously reported in toxin induced Drosophila model of Parkinson's disease.
Collapse
|
6
|
Wattanathorn J, Tong-un T, Thukham-mee W, Paholpak P, Rangseekhajee P. A Randomized, Double-Blind, Placebo-Controlled Study of an Anthocyanin-Rich Functional Ingredient on Cognitive Function and Eye Dryness in Late Adulthood Volunteers: Roles of Epigenetic and Gut Microbiome Modulations. Nutrients 2023; 15:3499. [PMID: 37630690 PMCID: PMC10459889 DOI: 10.3390/nu15163499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the rising demand for supplements targeting cognitive enhancement and dry eye together with the health benefits of anthocyanins, we have developed a functional soup containing an anthocyanin-rich functional ingredient, or "Anthaplex," and assessed the effects on cognitive function and eye dryness together with the possible mechanisms. A total of 69 male and female health volunteers were randomized and divided into placebo, D2, and D4 groups. All subjects consumed 120 mL of placebo or functional soup containing "Anthaplex" either at 2 or 4 g per serving per day within 5 min in the morning for eight weeks. The cognitive function, working memory, dry eye, AChE, MAO, MAO-A, MAO-B, and GABA-T activities, BDNF, HAC, HDAC, and DNMT activities, pH, and amount of lactic acid-producing bacteria, particularly Lactobacillus and Bifidobacterium spp. in feces, were determined before intervention and after eight weeks of consumption. Subjects who consumed the "Anthaplex" soup had improved cognitive function, working memory, eye dryness, histone acetylation, ACh E suppression, and BDNF with increased Bifidobacterium spp. but decreased pH in feces. These data suggest that "Anthaplex" improves cognitive function and eye dryness via the modulations of the histone acetylation process, gut microbiome, and cholinergic function.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.T.-u.); (W.T.-m.)
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.T.-u.); (W.T.-m.)
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.T.-u.); (W.T.-m.)
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pongsatorn Paholpak
- Department Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.R.)
| | - Poonsri Rangseekhajee
- Department Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.R.)
| |
Collapse
|
7
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
8
|
Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS, Klann IP, Nogueira CW, Sampaio TB, Pinton S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75 NTR pathway. Life Sci 2023; 324:121711. [PMID: 37088413 DOI: 10.1016/j.lfs.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiza Souza Marques
- Federal University of Santa Maria - Campus Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana CEP 97500-970, RS, Brazil.
| |
Collapse
|
9
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
10
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
11
|
Flanagan E, Cameron D, Sobhan R, Wong C, Pontifex MG, Tosi N, Mena P, Del Rio D, Sami S, Narbad A, Müller M, Hornberger M, Vauzour D. Chronic Consumption of Cranberries (Vaccinium macrocarpon) for 12 Weeks Improves Episodic Memory and Regional Brain Perfusion in Healthy Older Adults: A Randomised, Placebo-Controlled, Parallel-Groups Feasibility Study. Front Nutr 2022; 9:849902. [PMID: 35662954 PMCID: PMC9160193 DOI: 10.3389/fnut.2022.849902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background Ageing is highly associated with cognitive decline and modifiable risk factors such as diet are believed to protect against this process. Specific dietary components and in particular, (poly)phenol-rich fruits such as berries have been increasingly recognised for their protection against age-related neurodegeneration. However, the impact of cranberries on cognitive function and neural functioning in older adults remains unclear. Design A 12-week parallel randomised placebo-controlled trial of freeze-dried cranberry powder was conducted in 60 older adults aged between 50 and 80 years. Cognitive assessment, including memory and executive function, neuroimaging and blood sample collection were conducted before and after the intervention to assess the impact of daily cranberry consumption on cognition, brain function and biomarkers of neuronal signalling. Results Cranberry supplementation for 12 weeks was associated with improvements in visual episodic memory in aged participants when compared to placebo. Mechanisms of action may include increased regional perfusion in the right entorhinal cortex, the accumbens area and the caudate in the cranberry group. Significant decrease in low-density lipoprotein (LDL) cholesterol during the course of the intervention was also observed. No significant differences were, however, detected for BDNF levels between groups. Conclusions The results of this study indicate that daily cranberry supplementation (equivalent to 1 small cup of cranberries) over a 12-week period improves episodic memory performance and neural functioning, providing a basis for future investigations to determine efficacy in the context of neurological disease. This trial was registered at clinicaltrials.gov as NCT03679533 and at ISRCTN as ISRCTN76069316.
Collapse
Affiliation(s)
- Emma Flanagan
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Donnie Cameron
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Rashed Sobhan
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Chloe Wong
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Matthew G. Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Michael Hornberger
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
- *Correspondence: David Vauzour,
| |
Collapse
|
12
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|