1
|
Liu J. Aged garlic therapeutic intervention targeting inflammatory pathways in pathogenesis of bowel disorders. Heliyon 2024; 10:e33986. [PMID: 39130474 PMCID: PMC11315124 DOI: 10.1016/j.heliyon.2024.e33986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, manifest as a result of intricate interactions involving genetic predisposition, environmental factors, intestinal microbiota dynamics, and immune dysregulation, ultimately leading to persistent mucosal inflammation. Addressing this complex pathology requires a nuanced understanding to inform targeted therapeutic strategies. Consequently, our study explored the viability of Aged Garlic Extract (AGE) as an alternative therapeutic regimen for IBD management. Utilizing gas chromatography-mass spectrometry (GC-MS) and scanning electron microscopy (SEM), we characterized AGE, revealing distinctions from Fresh Garlic Extract (FGE), particularly the absence of allicin in AGE and accompanying structural alterations. In In-Vivo experiments employing an IBD rat model, AGE intervention exhibited remarkable antioxidant, antibacterial, and anti-inflammatory properties. Noteworthy outcomes included improved survival rates, mitigation of intestinal damage, restoration of gut microbial diversity, reinforcement of tight junctions, and reversal of mitochondrial dysfunction. Collectively, these effects contributed to the preservation of enterocyte integrity and the attenuation of inflammation. In conclusion, the unique chemical composition of AGE, coupled with its substantial influence on gut microbiota, antioxidant defenses, and inflammatory pathways, positions it as a promising adjunctive therapy for the management of IBD. These observations, synergistically considered with existing research, provide significant insights into the potential utility of AGE in addressing the intricate pathophysiology inherent to IBD. The potential strength of study and rationale of using AGE against IBD includes exploring alternative therapeutic regimens if conventional treatments are associated with side effects, identification of potential hotspots/pathways involved in disease progression and study can provide economically cheaper and naturally occurring alternative to patient community who are struggling to afford expensive medications. These promising findings underscore the necessity for additional investigations to ascertain the feasibility of clinical translation, thereby substantiating the potential therapeutic role of AGE in the management of IBD.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| |
Collapse
|
2
|
Li X, Gao Y, Li B, Zhao W, Cai Q, Yin W, Zeng S, Li X, Gao H, Cheng M. Integrated proteomics and metabolomics analysis of D-pinitol function during hippocampal damage in streptozocin-induced aging-accelerated mice. Front Mol Neurosci 2023; 16:1251513. [PMID: 38025258 PMCID: PMC10664147 DOI: 10.3389/fnmol.2023.1251513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Diabetes can cause hippocampal damage and lead to cognitive impairment. Diabetic cognitive impairment (DCI) is a chronic complication of diabetes associated with a high disability rate; however, its pathogenesis and therapeutic targets are unclear. We aimed to explore the mechanism of hippocampal damage during diabetes and evaluate the potential role of D-pinitol (DP) in protecting hippocampal tissue and improving cognitive dysfunction. Methods DP (150 mg/kg/day) was administered intragastrically to streptozocin-induced aging-accelerated mice for 8 weeks. Hippocampal tissues were examined using tandem mass tag (TMT)-based proteomics and liquid chromatography-mass spectrometry (LC-MS)/MS-based non-targeted metabolomic analysis. Differentially expressed proteins (DEPs) and differentially regulated metabolites (DRMs) were screened for further analysis, and some DEPs were verified using western blotting. Results Our results showed that 329 proteins had significantly altered hippocampal expression in untreated diabetic mice (DM), which was restored to normal after DP treatment in 72 cases. In total, 207 DRMs were identified in the DM group, and the expression of 32 DRMs was restored to normal post-DP treatment. These proteins and metabolites are involved in metabolic pathways (purine metabolism, arginine and proline metabolism, and histidine metabolism), actin cytoskeleton regulation, oxidative phosphorylation, and Rap1-mediated signaling. Conclusions Our study may help to better understand the mechanism of diabetic hippocampal damage and cognitive impairment and suggest a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
- Department of Diabetes, The Third People's Hospital of Gansu Province, Lanzhou, China
| | - Yuan Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Qian Cai
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Wenbin Yin
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Shudong Zeng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Xiaoli Li
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine, Jinan, China
| |
Collapse
|
3
|
Liao X, Han Y, He Y, Liu J, Wang Y. Natural compounds targeting mitochondrial dysfunction: emerging therapeutics for target organ damage in hypertension. Front Pharmacol 2023; 14:1209890. [PMID: 37397478 PMCID: PMC10311420 DOI: 10.3389/fphar.2023.1209890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Hypertension generally causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. This can result in atherosclerosis, plaque formation, cardiovascular and cerebrovascular events, and renal failure. Recent studies have indicated that mitochondrial dysfunction is crucial in hypertensive target organ damage. Consequently, mitochondria-targeted therapies attract increasing attention. Natural compounds are valuable resources for drug discovery and development. Many studies have demonstrated that natural compounds can ameliorate mitochondrial dysfunction in hypertensive target organ damage. This review examines the contribution of mitochondrial dysfunction to the development of target organ damage in hypertension. Moreover, it summarizes therapeutic strategies based on natural compounds that target mitochondrial dysfunction, which may be beneficial for preventing and treating hypertensive target organ damage.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Wan X, Li D, Lu J, Yan Y, He Z, Chen J, Jiao Y, Li J, Li W. The construction of garlic diallyl disulfide nano-emulsions and their effect on the physicochemical properties and heterocyclic aromatic amines formation in roasted pork. Food Chem 2023; 408:135159. [PMID: 36549165 DOI: 10.1016/j.foodchem.2022.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Garlic diallyl disulfide (DAD) nano-emulsions consisting of soy proteins were constructed, and their effects on physicochemical properties and heterocyclic aromatic amines (HAAs) formation in roasted pork were investigated. DAD was well encapsulated by soy proteins with a mean particle of 400-700 nm. Applying DAD nano-emulsions to pork patties significantly altered the color and texture of roasted pork, with a slight increase in brightness and decreases in redness and yellowness. The flavor determination demonstrated that sulfur-containing compound levels in encapsulated DAD were significantly reduced, particularly 7S group compounds, indicating an effective shielding effect on the irritating odor of garlic oil by protein. The levels of three HAAs (MeIQx, PhIP, and Harman) were significantly reduced by DAD nano-emulsion exposure (51.84 %, 76.80 %, and 48.70 %, respectively). This study provides a new method for inhibiting HAA formation and improving the sensory qualities of meat products.
Collapse
Affiliation(s)
- Xin Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Danyang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jiayan Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yan Yan
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Yu HR, Chen BH. Analysis of Phenolic Acids and Flavonoids in Rabbiteye Blueberry Leaves by UPLC-MS/MS and Preparation of Nanoemulsions and Extracts for Improving Antiaging Effects in Mice. Foods 2023; 12:foods12101942. [PMID: 37238760 DOI: 10.3390/foods12101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Rabbiteye blueberry leaves, a waste produced after harvest of blueberry, are rich in polyphenols. This study aims to analyze phenolic acids and flavonoids in blueberry leaves by UPLC-MS/MS and prepare nanoemulsions for determining anti-aging activity in mice. Overall, 30% ethanol was the most suitable extraction solvent for total phenolic acids and total flavonoids. A total of four phenolic acids and four flavonoids were separated within seven minutes for further identification and quantitation by UPLC-MS/MS in selective reaction monitoring (SRM) mode, with 3-O-caffeoylquinic acid being present in the highest amount (6474.2 μg/g), followed by quercetin-3-O-galactoside (1943.9 μg/g), quercetin-3-O-rutinoside (1036.6 μg/g), quercetin-3-O-glucoside (867.2 μg/g), 5-O-caffeoylquinic acid (815.8 μg/g), kaempferol-3-O-glucoside (309.7 μg/g), 3,5-dicaffeoylquinic acid (195.3 μg/g), and 4,5-dicaffeoylquinic acid (60.8 μg/g). The blueberry nanoemulsion was prepared by using an appropriate ratio of soybean oil, Tween 80, glycerol, ethanol, and water at 1.2%, 8%, 2%, 2%, and 86.8%, respectively, and mixing with dried blueberry extract, with the mean particle size and zeta potential being 16 nm and -54 mV, respectively. A high stability was observed during storage of nanoemulsion for 90 days at 4 °C and heated at 100 °C for 2 h. An animal study revealed that this nanoemulsion could elevate dopamine content in mice brain as well as superoxide dismutase, glutathione peroxidase, and catalase activities in mice liver while reducing the contents of malondialdehyde and protein carbonyl in mice brains. Collectively, the high-dose nanoemulsion possessed the highest efficiency in improving mice aging with a promising potential for development into a health food.
Collapse
Affiliation(s)
- Hsin-Rong Yu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
6
|
Alterations in regional homogeneity and functional connectivity associated with cognitive impairment in patients with hypertension: a resting-state functional magnetic resonance imaging study. Hypertens Res 2023; 46:1311-1325. [PMID: 36690806 DOI: 10.1038/s41440-023-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Our study aims to investigate the alterations and diagnostic efficiency of regional homogeneity (ReHo) and functional connectivity (FC) in hypertension patients with cognitive impairment. A total of 62 hypertension patients with cognitive impairment (HTN-CI), 59 hypertension patients with normal cognition (HTN-NC), and 58 healthy controls (HCs) with rs-fMRI data were enrolled in this study. Univariate analysis (based on whole-brain ReHo and seed-based FC maps) was performed to observe brain regions with significant differences among the three groups. Multiple voxel pattern analysis (MVPA) was applied to evaluate the diagnostic accuracy in classifying HTN-CI from HTN-NC and HCs. Compared with the HCs and HTN-NC, HTN-CI exhibited decreased ReHo in the right caudate, left postcentral gyrus, posterior cingulate gyrus, insula, while increased ReHo in the left superior occipital gyrus and superior parietal gyrus. HTN-CI showed increased FC between seed regions (left posterior cingulate gyrus, insula, postcentral gyrus) with many specific brain regions. MVPA analysis (based on whole-brain ReHo and seed-based FC maps) displayed high classification ability in distinguishing HTN-CI from HTN-NC and HCs. The ReHo values (right caudate) and the FC values (left postcentral gyrus seed to left posterior cingulate gyrus) were positively correlated with the MoCA scores in HTN-CI. HTN-CI was associated with decreased ReHo and increased FC mainly in the left posterior cingulate gyrus, postcentral gyrus, insula compared to HTN-NC and HC. Besides, MVPA analysis yields excellent diagnostic accuracy in classifying HTN-CI from HTN-NC and HCs. The findings may contribute to unveiling the underlying neuropathological mechanism of HTN-CI.
Collapse
|
7
|
Ghazimoradi MM, Ghoushi E, Ghobadi Pour M, Karimi Ahmadabadi H, Rafieian-Kopaei M. A Review on Garlic as a Supplement for Alzheimer’s Disease: A Mechanistic Insight into its Direct and Indirect Effects. Curr Pharm Des 2023; 29:519-526. [PMID: 36809972 DOI: 10.2174/1381612829666230222093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Alzheimer’s disease (AD) is one of the most complicated neurodegenerative diseases causing dementia in human beings. Aside from that, the incidence of AD is increasing and its treatment is very complicated. There are several known hypotheses regarding the pathology of Alzheimer’s disease, including the amyloid beta hypothesis, tau hypothesis, inflammation hypothesis, and cholinergic hypothesis, which are investigated in different researches to completely elucidate the pathology of AD. Besides, some new mechanisms, such as immune, endocrine, and vagus pathways, as well as bacteria metabolite secretions, are being explained as other causes to be somehow related to AD pathogenesis. There is still no definite treatment for Alzheimer’s disease that can completely cure and eradicate AD. Garlic (Allium sativum) is a traditional herb used as a spice in different cultures, and due to the organosulfur compounds, like allicin, it possesses highly anti-oxidant properties; the benefits of garlic in cardiovascular diseases, like hypertension and atherosclerosis, have been examined and reviewed, although its beneficiary effects in neurodegenerative diseases, such as AD, are not completely understood. In this review, we discuss the effects of garlic based on its components, such as allicin and S-allyl cysteine, on Alzheimer’s disease and the mechanisms of garlic components that can be beneficiary for AD patients, including its effects on amyloid beta, oxidative stress, tau protein, gene expression, and cholinesterase enzymes. Based on the literature review, garlic has been revealed to have beneficiary effects on Alzheimer’s disease, especially in animal studies; however, more studies should be done on humans to find the exact mechanisms of garlic’s effects on AD patients.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuro-Brain Research and Education Network (INBREN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ehsan Ghoushi
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Mozhgan Ghobadi Pour
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Phan KS, Nguyen TM, To XT, Le TTH, Nguyen TT, Pham KD, Hoang PH, Dong TN, Dang DK, Phan THT, Mai TTT, Ha PT. Allium sativum@AgNPs and Phyllanthus urinaria@AgNPs: a comparative analysis for antibacterial application. RSC Adv 2022; 12:35730-35743. [PMID: 36545079 PMCID: PMC9748653 DOI: 10.1039/d2ra06847h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although medicinal herbs contain many biologically active ingredients that can act as antibiotic agents, most of them are difficult to dissolve in lipids and absorb through biofilms in the gastrointestinal tract. Besides, silver nanoparticles (AgNPs) have been widely used as a potential antibacterial agent, however, to achieve a bactericidal effect, high concentrations are required. In this work, AgNPs were combined into plant-based antibiotic nanoemulsions using biocompatible alginate/carboxyl methylcellulose scaffolds. The silver nanoparticles were prepared by a green method with an aqueous extract of Allium sativum or Phyllanthus urinaria extract. The botanical antibiotic components in the alcoholic extract of these plants were encapsulated with emulsifier poloxamer 407 to reduce the particle size, and make the active ingredients both water-soluble and lipid-soluble. Field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) analysis showed that the prepared nanosystems were spherical with a size of about 20 nm. Fourier transform infrared spectroscopy (FTIR) confirmed the interaction of the extracts and the alginate/carboxyl methylcellulose carrier. In vitro drug release kinetics of allicin and phyllanthin from the nanosystems exhibited a retarded release under different biological pH conditions. The antimicrobial activity of the synthesized nanoformulations were tested against Escherichia coli. The results showed that the nanosystem based on Allium sativum possesses a significantly higher antimicrobial activity against the tested organisms. Therefore, the combination of AgNPs with active compounds from Allium sativum extract is a good candidate for in vivo infection treatment application.
Collapse
Affiliation(s)
- Ke Son Phan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Minh Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Xuan Thang To
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Thu Huong Le
- Vietnam National University of Agriculture Trau Quy, Gia Lam Hanoi Vietnam
| | - Thanh Trung Nguyen
- Vietnam National University of Agriculture Trau Quy, Gia Lam Hanoi Vietnam
| | - Kim Dang Pham
- Vietnam National University of Agriculture Trau Quy, Gia Lam Hanoi Vietnam
| | - Phuong Ha Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Nham Dong
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Dinh Kim Dang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | | | - Thi Thu Trang Mai
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
9
|
Al-Hakim NA, Fidrianny I, Anggadiredja K, Mauludin R. Effect of Banana ( Musa sp.) Peels Extract in Nanoemulsion Dosage Forms for the Improvement of Memory: In Vitro & In Vivo Studies. Pharm Nanotechnol 2022; 10:299-309. [PMID: 35466890 PMCID: PMC9900702 DOI: 10.2174/2211738510666220422135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Banana (Musa sp.) is a plant rich in phytochemical compounds, especially antioxidants, which are hypothesized to inhibit the activity of acetylcholinesterase, an enzyme associated with Alzheimer's Disease. OBJECTIVE This research aimed to study nanoemulsion preparations of Kepok banana (KEP-NE) and Tanduk banana (TAN-NE) peel extracts for their activities as antioxidants, acetylcholinesterase as well as tyrosinase inhibitors, and as agents to improve short-term memory. METHODS Nanoemulsion was prepared using a combination of high shear homogenization and ultrasonication. The antioxidant activity test was carried out using DPPH and ABTS methods. Meanwhile, memory improvement was studied in a mouse model with memory impairment induced by alloxan (120 mg/kg b.w) using the Y-maze apparatus. ELISA performed determination of acetylcholinesterase and tyrosinase inhibition. RESULTS Characterization of the nanoemulsion was performed to include particle size, antioxidant activity, acetylcholinesterase, and tyrosinase inhibition. The particle size and polydispersity index (PI) of KEP-NE and TAN-NE were 84.2 nm (PI: 0.280) and 94.1 nm (PI: 0.282), respectively. The antioxidant activity of DPPH showed that the respective IC50 values of KEP-NE and TAN-NE were 0.64 μg/mL and 1.97 μg/mL. At the same time, the values with the ABTS method were 1.10 μg/mL and 1.72 μg/mL, respectively. The IC50 of KEP-NE on acetylcholinesterase inhibition was 108.80 μg/mL, and that on tyrosinase inhibition was 251.47 μg/mL. The study of short-term memory in the Y-maze revealed that the groups Kepok peel extracts 100 and 300 mg/kg b.w and KEP-NE 100 and 300 mg/kg b.w significantly (P < 0.05) improved short-term memory. CONCLUSION This study suggests that the nanoemulsion dosage form of Kepok banana peel extract has antioxidant and acetylcholinesterase inhibition and tyrosinase inhibition activities and could potentially be an adjunct alternative treatment for memory disorders. Modifying the smaller drug particle size contributes to the delivery system. The nanoemulsion can increase pharmacological activity.
Collapse
Affiliation(s)
- Nur Achsan Al-Hakim
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Irda Fidrianny
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | | | - Rachmat Mauludin
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia,Address correspondence to this author at the School of Pharmacy, Bandung Institute of Technology, Ganesha 10 Bandung, 40132, Indonesia; Tel: +62-22 250 4852, E-mail:
| |
Collapse
|
10
|
Qin Y, Zhao B, Deng H, Zhang M, Qiao Y, Liu Q, Shi C, Li Y. Isolation and Quantification of the Hepatoprotective Flavonoids From Scleromitron diffusum (Willd.) R. J. Wang With Bio-Enzymatic Method Against NAFLD by UPLC-MS/MS. Front Pharmacol 2022; 13:890148. [PMID: 35770080 PMCID: PMC9234865 DOI: 10.3389/fphar.2022.890148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Flavonoids were the major phytochemicals against hepatic peroxidative injury in Scleromitron diffusum (Willd.) R. J. Wang with an inventive bio-enzymatic method by our group (LU500041). Firstly, the total flavonoids from Scleromitron diffusum (Willd.) R. J. Wang were extracted by reflux, ultrasonic, ultrasound-assisted enzymatic methods (TFH), and the bio-enzymatic method (Ey-TFH). Then 24 flavonoid compounds were isolated and quantified in the extracts by UPLC-MS/MS. Next, six representative differential compounds in Ey-TFH were further screened out by multivariate statistical analysis compared with those in TFH. In a further step, Ey-TFH presented a higher protective rate (59.30 ± 0.81%) against H2O2-damaged HL-02 hepatocytes than TFH. And six representative differential compounds at 8 and 16 μmol/L all exerted significant hepatoprotective effects (p < 0.05 or p < 0.01). Finally, the therapeutic action of Ey-TFH for nonalcoholic fatty liver disease (NAFLD) was processed by a rat's model induced with a high-fat diet. Ey-TFH (90, 120 mg/kg) significantly ameliorated the lipid accumulation in the rat model (p < 0.05). Meanwhile, Ey-TFH relieved liver damage. The levels of ALT, ALP, AST, LDH, and γ-GT in rats' serum were also significantly reduced (p < 0.05 or p < 0.01). In addition to this, the body's antioxidant capacity was improved with elevated SOD and GSH levels (p < 0.05) and down-regulated MDA content (p < 0.01) after Ey-TFH administration. Histopathological observations of staining confirmed the hepatic-protective effect of Ey-TFH.
Collapse
Affiliation(s)
- Yuxi Qin
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Baojin Zhao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Huifang Deng
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Mengjiao Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yanan Qiao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
| | - Chuandao Shi
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
| | - Yunlan Li
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Jiang XY, Liang JY, Si-Yuan J, Pan Z, Feng T, Jia L, Xin-Xia L, Zhao DS. Garlic polysaccharides: A review on their extraction, isolation, structural characteristics, and bioactivities. Carbohydr Res 2022; 518:108599. [DOI: 10.1016/j.carres.2022.108599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
|
12
|
Piragine E, Citi V, Lawson K, Calderone V, Martelli A. Potential Effects of Natural H 2S-Donors in Hypertension Management. Biomolecules 2022; 12:biom12040581. [PMID: 35454169 PMCID: PMC9024781 DOI: 10.3390/biom12040581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
After the discovery of hydrogen sulfide (H2S) in the central nervous system by Abe and Kimura in 1996, the physiopathological role of H2S has been widely investigated in several systems such as the cardiovascular. In particular, H2S plays a pivotal role in the control of vascular tone, exhibiting mechanisms of action able to induce vasodilation: for instance, activation of potassium channels (KATP and Kv7) and inhibition of 5-phosphodiesterase (5-PDE). These findings paved the way for the research of natural and synthetic exogenous H2S-donors (i.e., molecules able to release H2S) in order to have new tools for the management of hypertension. In this scenario, some natural molecules derived from Alliaceae (i.e., garlic) and Brassicaceae (i.e., rocket or broccoli) botanical families show the profile of slow H2S-donors able to mimic the endogenous production of this gasotransmitter and therefore can be viewed as interesting potential tools for management of hypertension or pre-hypertension. In this article, the preclinical and clinical impacts of these natural H2S-donors on hypertension and vascular integrity have been reviewed in order to give a complete panorama of their potential use for the management of hypertension and related vascular diseases.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
| | - Kim Lawson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD)”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD)”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|