1
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
2
|
Schneider E, Tita MD, Guerreiro JL, Duarte AJ, Moreira FTC. Prussian blue nanocubes with peroxidase-like activity for polyphenol detection in commercial beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3663-3674. [PMID: 38804266 DOI: 10.1039/d4ay00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The present study describes an efficient method for the determination of polyphenol content in beverages based on a composite material of graphene oxide decorated with Prussian blue nanocubes (rGO/PBNCs). In this method, rGO/PBNCs act as a nanoenzyme with peroxidase-like catalytic activity and produce a colorimetric product in the presence of hydrogen peroxide and tetramethylbenzidine (TMB). To verify the effectiveness of the method, we used two model standards for antioxidants: gallic acid (GA) and tannic acid (TA). The method validation included a comparison of the performance of a natural enzyme and an artificial one (rGO/PBNCs) and two polyphenols in the analysis of commercial beverage samples. After optimization, a pH of 4, ambient temperature (22 °C), a reaction time of 2 minutes and an rGO/PBNCs concentration of 0.01 μg mL-1 were found to be the most favorable conditions. The detection limits obtained were 5.6 μmol L-1 for GA and 1.5 μmol L-1 for TA. Overall, rGO/PBNCs offer advantages over natural enzymes in terms of stability, versatility, scalability and durability, making them attractive candidates for a wide range of catalytic and sensory applications.
Collapse
Affiliation(s)
- Eduarda Schneider
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Marta D Tita
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Joana L Guerreiro
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Abel J Duarte
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| |
Collapse
|
3
|
Zhang J, Shen Y, Li G, Zhang F, Yang A, Li J, Pu S, Huang Q, Zhuang B, Yu X. Bibliometrics and visualization analysis of literature on male hypogonadism from 2000 to 2023: research focus and frontiers. Int J Impot Res 2024; 36:312-323. [PMID: 38052978 DOI: 10.1038/s41443-023-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Male hypogonadism can seriously affect male health and fertility, yet comprehensive bibliometric and visualization analyses of research in this area have been lacking. This study aimed to examine the distribution of literature, identify research hotspots, and discern development trends in male hypogonadism by analyzing 4026 English documents published between 2000 and 2023 using bibliometric and visual analyses. The results indicated a significant increase in publications and citations related to male hypogonadism over the past two decades, with the United States, the University of Florence, Maggi M, and the Journal of Clinical Endocrinology & Metabolism recognized as the most productive and highly cited country, institution, author, and journal, respectively. The article titled "The GPR54 gene as a regulator of puberty" received the highest number of citations. The keywords were categorized into four distinct clusters, including the etiology and pathogenesis of male hypogonadism, symptoms of late-onset hypogonadism, testosterone replacement therapy and its contraindications, the correlation between male hypogonadism and metabolic syndrome (MetS), obesity, and the epidemiology of male hypogonadism. The most frequently co-occurring keywords were "hypogonadism", "testosterone", and "men", while "oxidative stress" was the most prominent burst keyword. The analysis also identified "male infertility" and "oxidative stress" as the primary burst keywords in the last five years, indicating their emerging high-interest topics. Overall, this study provides a comprehensive overview of male hypogonadism research, offering valuable insights for researchers interested in this area, including potential collaborators, current research hotspots, and future research directions.
Collapse
Affiliation(s)
- Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Guangsen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Feng Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Aili Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Junjun Li
- Chengdu Fifth People's Hospital/Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyun Pu
- Chengdu Fifth People's Hospital/Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qingqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Baojun Zhuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xujun Yu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Naelitz BD, Khooblall PS, Parekh NV, Vij SC, Rotz SJ, Lundy SD. The effect of red blood cell disorders on male fertility and reproductive health. Nat Rev Urol 2024; 21:303-316. [PMID: 38172196 DOI: 10.1038/s41585-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Male infertility is defined as a failure to conceive after 12 months of unprotected intercourse owing to suspected male reproductive factors. Non-malignant red blood cell disorders are systemic conditions that have been associated with male infertility with varying severity and strength of evidence. Hereditary haemoglobinopathies and bone marrow failure syndromes have been associated with hypothalamic-pituitary-gonadal axis dysfunction, hypogonadism, and abnormal sperm parameters. Bone marrow transplantation is a potential cure for these conditions, but exposes patients to potentially gonadotoxic chemotherapy and/or radiation that could further impair fertility. Iron imbalance might also reduce male fertility. Thus, disorders of hereditary iron overload can cause iron deposition in tissues that might result in hypogonadism and impaired spermatogenesis, whereas severe iron deficiency can propagate anaemias that decrease gonadotropin release and sperm counts. Reproductive urologists should be included in the comprehensive care of patients with red blood cell disorders, especially when gonadotoxic treatments are being considered, to ensure fertility concerns are appropriately evaluated and managed.
Collapse
Affiliation(s)
- Bryan D Naelitz
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Prajit S Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Neel V Parekh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seth J Rotz
- Department of Paediatric Hematology and Oncology, Cleveland Clinic Children's Hospital, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
5
|
Christensen LL, Poulsen HE, Andersen MS, Glintborg D. Whole-body oxidative stress reduction during testosterone therapy in aging men: A randomized placebo-controlled trial. Andrology 2024; 12:115-122. [PMID: 37177884 DOI: 10.1111/andr.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Testosterone replacement therapy in aging men increases lean body mass and decreases whole-body fat. The safety of testosterone replacement therapy concerning cardiovascular disease is unresolved and assessment of whole-body oxidative stress may contribute to future decision making. OBJECTIVES To determine whole-body oxidative stress during testosterone replacement therapy and placebo in aging men and evaluate if a change in oxidative stress was mediated by changed body composition. MATERIALS AND METHODS This was a double-blinded, randomized, placebo-controlled study for 24 weeks in 38 men aged 60-78 years with bioavailable testosterone <7.3 nmol/L and waist circumference ≥94 cm who were randomized to testosterone replacement therapy (testosterone gel) (N = 20) or placebo (N = 18). At baseline and after 24 weeks, whole-body oxidative stress was assessed by oxidized derivatives of nucleic acids, 8-oxoguanosine and 8-oxo-2'-deoxyguanosine in 24-h urine samples by ultra-performance liquid chromatography tandem mass spectrometry. Lean body mass and whole-body fat were measured by dual X-ray absorptiometry. Subcutaneous and visceral adipose tissue were estimated by magnetic resonance imaging. Testosterone replacement therapy versus placebo was compared by Mann-Whitney tests on ∆-values (24-0 weeks). RESULTS Baseline age was 67 (64-72) years (median [interquartile range]), body mass index 29.8 (26.6-33.3) kg/m2 , waist 107 (99-117) cm, and bioavailable testosterone 4.7 (3.7-5.9) nmol/L. During testosterone replacement therapy, 8-oxoguanosine in 24-h urine samples decreased from 21.6 (19.8; 27.7) nm to 15.0 (12.2; 18.8) nm (p = 0.038 vs. placebo), lean body mass increased (p < 0.01) and whole-body fat (p = 0.02) and subcutaneous adipose tissue (p < 0.01) decreased. 8-Oxoguanosine in 24-h urine samples was inversely associated with Δ-lean body mass (ρ = -0.38, p = 0.03), which remained significant after adjusting for Δ-total testosterone. 8-Oxo-2'-deoxyguanosine in 24-h urine samples was unchanged (p = 0.06) during testosterone replacement therapy and Δ-8-oxo-2'-deoxyguanosine in 24-h urine samples was associated with Δ-whole-body fat (kg) (ρ = 0.47, p < 0.01). Δ-Values of oxidative stress biomarkers were not associated with Δ-fasting insulin or Δ-homeostatic model assessment of insulin resistance. DISCUSSION Oxidative stress decreased during testosterone replacement therapy compared to placebo, which could be mediated by changed body composition. CONCLUSION Whole-body oxidative stress decreased during 24 weeks of testosterone replacement therapy in aging men.
Collapse
Affiliation(s)
- Louise Lehmann Christensen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Henrik Enghusen Poulsen
- Department of Endocrinology, University Hospital Copenhagen, Bispebjerg-Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Cardiology, University Hospital Copenhagen, Nordsjaellands Hospital Hillerød, Hillerod, Denmark
| | - Marianne Skovsager Andersen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
7
|
Aitken RJ. Male reproductive ageing: a radical road to ruin. Hum Reprod 2023; 38:1861-1871. [PMID: 37568254 PMCID: PMC10546083 DOI: 10.1093/humrep/dead157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
9
|
Ubuka T, Bu G, Tobari Y. Editorial: Stress and reproduction in animal models. Front Endocrinol (Lausanne) 2023; 14:1202275. [PMID: 37214241 PMCID: PMC10198259 DOI: 10.3389/fendo.2023.1202275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Affiliation(s)
- Takayoshi Ubuka
- Initiative for Research and Development, International Cancer Laboratory Co., Ltd., Tokyo, Japan
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yasuko Tobari
- School of Veterinary Medicine Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| |
Collapse
|
10
|
Bak J, Lee SJ, Kim TW, Hwang S, Park MJ, Arunachalam R, Yoo E, Park MH, Choi YS, Kim HK. Schisandrol A and gomisin N from Schisandra chinensis extract improve hypogonadism via anti-oxidative stress in TM3 Leydig cells. Nutr Res Pract 2023; 17:1-12. [PMID: 36777801 PMCID: PMC9884586 DOI: 10.4162/nrp.2023.17.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Male hypogonadism is a condition where the body does not produce enough testosterone and significantly impacts health. Age, obesity, genetics, and oxidative stress are some physiological factors that may contribute to testosterone deficiency. Previous studies have shown many pharmacological benefits of Schisandra chinensis (S. chinensis) Baillon as an anti-inflammatory and antioxidant. However, the molecular mechanism of attenuating hypogonadism is yet to be well established. This research was undertaken to study the effects of S. chinensis extract (SCE) on testosterone deficiency. MATERIALS/METHODS S. chinensis fruit was pulverized and extracted using 60% aqueous ethanol. HPLC analysis was performed to analyze and quantify the lignans of the SCE. RESULTS The 2,2-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays confirmed that the SCE and its major lignans (schisandrol A and gomisin N) inhibit oxidative stress. Effects of SCE analysis on the testosterone level under oxidative stress conditions revealed that both schisandrol A and gomisin N were able to recover the lowered testosterone levels. Through mRNA expression of TM3 Leydig cell, we observed that the SCE lignans were able to induce the enzymes involved in testosterone biosynthesis-related genes such as 3β-HSD4 (P < 0.01 for SCE, and P < 0.001 for schisandrol A and gomisin N), 17β-HSD3 (P < 0.001 for SCE, schisandrol A and gomisin N), and 17, 20-desmolase (P < 0.01 for schisandrol A, and P < 0.001 for SCE and gomisin N). CONCLUSIONS These results support that SCE and its active components could be potential therapeutic agents for regulating and increasing testosterone production.
Collapse
Affiliation(s)
- Jia Bak
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Seung Ju Lee
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Tae Won Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Seonhwa Hwang
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Min Ju Park
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Rohith Arunachalam
- College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Eunsoo Yoo
- College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Min Hi Park
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Yun-Sik Choi
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
11
|
Sahoo DK, Chainy GBN. Hormone-linked redox status and its modulation by antioxidants. VITAMINS AND HORMONES 2023; 121:197-246. [PMID: 36707135 DOI: 10.1016/bs.vh.2022.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hormones have been considered as key factors involved in the maintenance of the redox status of the body. We are making considerable progress in understanding interactions between the endocrine system, redox status, and oxidative stress with the dynamics of life, which encompasses fertilization, development, growth, aging, and various pathophysiological states. One of the reasons for changes in redox states of vertebrates leading to oxidative stress scenario is the disruption of the endocrine system. Comprehending the dynamics of hormonal status to redox state and oxidative stress in living systems is challenging. It is more difficult to come to a unifying conclusion when some hormones exhibit oxidant properties while others have antioxidant features. There is a very limited approach to correlate alteration in titers of hormones with redox status and oxidative stress with growth, development, aging, and pathophysiological stress. The situation is further complicated when considering various tissues and sexes in vertebrates. This chapter discusses the beneficial impacts of hormones with antioxidative properties, such as melatonin, glucagon, insulin, estrogens, and progesterone, which protect cells from oxidative damage and reduce pathophysiological effects. Additionally, we discuss the protective effects of antioxidants like vitamins A, E, and C, curcumin, tempol, N-acetyl cysteine, α-lipoic acid, date palm pollen extract, resveratrol, and flavonoids on oxidative stress triggered by hormones such as aldosterone, glucocorticoids, thyroid hormones, and catecholamines. Inflammation, pathophysiology, and the aging process can all be controlled by understanding how antioxidants and hormones operate together to maintain cellular redox status. Identifying the hormonal changes and the action of antioxidants may help in developing new therapeutic strategies for hormonal imbalance-related disorders.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa States University, Ames, IA, United States.
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Fujita N, Momota M, Ishida M, Iwane T, Hatakeyama S, Yoneyama T, Hashimoto Y, Yoshikawa K, Yamaya K, Ohyama C. Association of oxidative stress with erectile dysfunction in community-dwelling men and men on dialysis. Aging Male 2022; 25:193-201. [PMID: 35916472 DOI: 10.1080/13685538.2022.2103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES To investigate the association between oxidative stress and erectile dysfunction (ED) in community-dwelling men and men on dialysis. METHODS This cross-sectional study included 398 community-dwelling men and 42 men on dialysis. Oxidative stress was assessed using 8-hydroxy-2'-deoxyguanosine (8-OHdG). Univariable and multivariable logistic regression analyses were performed to evaluate the association between oxidative stress and ED. RESULTS Spearman's rank correlation test showed no significant correlation between urine 8-OHdG levels and the 5-Item International Index of Erectile Function scores in community-dwelling men (ρ = -0.005, p = 0.917) and between plasma 8-OHdG levels and the Sexual Health Inventory for Men scores in men on dialysis (ρ = 0.166, p = 0.295). In community-dwelling men, univariable and multivariable analyses revealed that urine 8-OHdG level was not significantly associated with ED (odds ratio [OR]: 1.005, 95% confidence interval [CI]: 0.884-1.144, p = 0.934; OR: 0.930, 95% CI: 0.798-1.084, p = 0.353; respectively). In men on dialysis, univariable analyses revealed that plasma 8-OHdG level was not significantly associated with severe ED (OR: 0.967, 95% CI: 0.876-1.066, p = 0.498). CONCLUSIONS Oxidative stress was not significantly associated with ED prevalence and severity in community-dwelling men and men on dialysis.
Collapse
Affiliation(s)
- Naoki Fujita
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaki Momota
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mizuri Ishida
- Department of Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuro Iwane
- Department of Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takahiro Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hashimoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Kanemitsu Yamaya
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
13
|
Miñambres I, Sardà H, Urgell E, Genua I, Ramos A, Fernández-Ananin S, Balagué C, Sánchez-Quesada JL, Bassas L, Pérez A. Obesity Surgery Improves Hypogonadism and Sexual Function in Men without Effects in Sperm Quality. J Clin Med 2022; 11:5126. [PMID: 36079056 PMCID: PMC9457146 DOI: 10.3390/jcm11175126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Obesity is associated with hypogonadism, sexual dysfunction, and impaired fertility in men. However, its effects on semen parameters or sexual function remain debatable. (2) Methods: This paper involves a longitudinal study in men submitted for obesity surgery at a university tertiary hospital. Patients were studied at baseline and at 6, 12, and 18 months after obesity surgery. At each visit, anthropometry measures were collected and hormonal and semen parameters were studied. Sexual function was evaluated with the International Index of Erectile Function (IIEF). (3) Results: A total of 12 patients were included. The average body mass index of patients decreased from 42.37 ± 4.44 to 29.6 ± 3.77 kg/m2 at 18 months after surgery (p < 0.05). Hormonal parameters improved after obesity surgery. The proportion of sperm cells with normal morphology tended to decrease from baseline and became most significant at 18 months (5.83 ± 4.50 vs. 2.82 ± 2.08). No significant changes were found in the remaining semen parameters. Erectile function improved significantly at six months after surgery. (4) Conclusions: The authors believe that, in general, the effects of obesity surgery on fertility may be limited or even deleterious (at least in the short and midterm follow-up).
Collapse
Affiliation(s)
- Inka Miñambres
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Helena Sardà
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Eulalia Urgell
- Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Idoia Genua
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Analía Ramos
- Endocrinology and Nutrition Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sonia Fernández-Ananin
- General Surgery Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Carmen Balagué
- General Surgery Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Molecular Biology and Biochemistry Department, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Lluís Bassas
- Andrology Department, Fundació Puigvert, 08025 Barcelona, Spain
| | - Antonio Pérez
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| |
Collapse
|
14
|
Leisegang K, Finelli R, Sikka SC, Panner Selvam MK. Eurycoma longifolia (Jack) Improves Serum Total Testosterone in Men: A Systematic Review and Meta-Analysis of Clinical Trials. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1047. [PMID: 36013514 PMCID: PMC9415500 DOI: 10.3390/medicina58081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Background and Objectives: Male hypogonadism is a clinical disorder characterized by reduced serum testosterone in men. Although treatment using herbal medicines, including Eurycoma longifolia, has been investigated, the benefits remain unclear. This study aims to investigate the efficacy of E. longifolia as a sole intervention to increase testosterone levels in males. Materials and Methods: We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) according to the PRISMA guidelines. Relevant articles were retrieved from the databases PubMed, Scopus, Web of Science, Cochrane, Ovid/Embase, and Google Scholar. Results: After literature screening, a total of nine studies was included in the systematic review. Five RCTs were included in the meta-analysis. A significant improvement in total testosterone levels after E. longifolia treatment was mostly reported in both healthy volunteers and hypogonadal men. The random model effect revealed a significant increase (SMD = 1.352, 95% CI 0.565 to 2.138, p = 0.001) in the total testosterone levels in men receiving E. longifolia supplementation, which was confirmed in the hypogonadism subgroup. Conclusions: This systematic review and meta-analysis of the literature supports the possible use of E. longifolia supplementation for enhancing testosterone production. Although more research is required before its use in clinical practice, this may represent a safe and promising therapeutic option, particularly in hypogonadal men.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, Bellville, Cape Town 7535, South Africa
| | | | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
15
|
Crisóstomo L, Oliveira PF, Alves MG. Antioxidants, Oxidative Stress, and Non-Communicable Diseases. Antioxidants (Basel) 2022; 11:antiox11061080. [PMID: 35739977 PMCID: PMC9220197 DOI: 10.3390/antiox11061080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Non-communicable diseases have become the leading cause of death, morbidity, and loss of healthy years worldwide, according to the World Health Organization [...]
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departamento de Anatomia, e Unidade Multidisciplinar de Investigação em Biomedicina (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- Departamento de Anatomia, e Unidade Multidisciplinar de Investigação em Biomedicina (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-600 Porto, Portugal
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +351-967-245-248
| |
Collapse
|
16
|
Cytoprotective and Antigenotoxic Properties of Organic vs. Conventional Tomato Puree: Evidence in Zebrafish Model. FISHES 2022. [DOI: 10.3390/fishes7030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this in vivo study, we investigated cytoprotective and antigenotoxic effects of commercial tomato puree obtained from conventional vs. organic farming systems (pesticides vs. pesticide-free agriculture, respectively). This is relevant as pesticides are widely used in agriculture to prevent pests, weeds, and the spread of plant pathogens. By exposing zebrafish to tomato puree alone and in combination with H2O2 (a well-known genotoxic agent), we analyzed the percentage of fish survival, cell viability, intracellular concentration of reactive oxygen species (ROS), DNA fragmentation index (DFI%), and genomic template stability (GTS%). Fish exposed to organic puree showed higher fish survival and cellular viability, lower DFI% and ROS, and improved GTS%. Our results suggest a higher cytoprotective and antigenotoxic effect of organic pesticide-free tomatoes, probably because the activity of natural phytochemicals is not affected by the presence of toxic residues, which are otherwise produced by pesticides used in conventional farming systems. Our study points out the importance of considering alternative strategies in agriculture to minimize the genotoxic impact of chemical pesticides.
Collapse
|
17
|
Wang S, Wei Y, Hu C, Liu F. Proteomic analysis reveals proteins and pathways associated with declined testosterone production in male obese mice after chronic high-altitude exposure. Front Endocrinol (Lausanne) 2022; 13:1046901. [PMID: 36531490 PMCID: PMC9748565 DOI: 10.3389/fendo.2022.1046901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Obesity is common in highland areas owing to lifestyle alterations. There are pieces of evidence to suggest that both obesity and hypoxia may promote oxidative stress, leading to hypogonadism in males. These findings indicate an increased risk of hypogonadism in obese males following hypoxia exposure. However, the mechanisms underlying the disease process remain unclear. The current study aims to explore the mechanism of testosterone production dysfunction in obese male mice exposed to a chronic high-altitude hypoxia environment. METHODS An obese male mouse model was generated by inducing obesity in mice via a high-fat diet for 14 weeks, and the obese mice were then exposed to a high-altitude hypoxia environment for 24 days. Sera and testicular tissues were collected to detect serum lipids, sex hormone level, and testicular oxidative stress indicators. Morphological examination was performed to assess pathological alterations in testicular tissues and suborganelles in leydig cells. Proteomic alterations in testicular tissues were investigated using quantitative proteomics in Obese/Control and Obese-Hypoxia/Obese groups. RESULTS The results showed that chronic high-altitude hypoxia exposure aggravated low testosterone production in obese male mice accompanied by increased testicular oxidative stress and histological damages. In total, 363 and 242 differentially expressed proteins (DEPs) were identified in the two comparison groups, Obese/Control and Obese-Hypoxia/Obese, respectively. Functional enrichment analysis demonstrated that several significant functional terms and pathways related to testosterone production were altered in the two comparison groups. These included cholesterol metabolism, steroid hormone biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, oxidative stress responses, as well as retinol metabolism. Finally, 10 representative DEPs were selected for parallel reaction monitoring verification. Among them, StAR, DHCR7, NSDHL, CYP51A1, FDPS, FDX1, CYP11A1, ALDH1A1, and GPX3 were confirmed to be downregulated in the two groups. CONCLUSIONS Chronic hypoxia exposure could exacerbate low testosterone production in obese male mice by influencing the expression of key proteins involved in steroid hormone biosynthesis, cholesterol biosynthesis, oxidative stress responses and retinol metabolism.
Collapse
Affiliation(s)
- Shuqiong Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
| | - Youwen Wei
- Department of Plague Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Caiyan Hu
- Department of Laboratory Medicine, Baoding First Central Hospital, Baoding, China
| | - Fang Liu
- Department of Biochemistry, Medical College, Qinghai University, Xining, China
- *Correspondence: Fang Liu,
| |
Collapse
|
18
|
Musicki B, Burnett AL. Testosterone Deficiency in Sickle Cell Disease: Recognition and Remediation. Front Endocrinol (Lausanne) 2022; 13:892184. [PMID: 35592776 PMCID: PMC9113536 DOI: 10.3389/fendo.2022.892184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Hypogonadism is common in men with sickle cell disease (SCD) with prevalence rates as high as 25%. Testicular failure (primary hypogonadism) is established as the principal cause for this hormonal abnormality, although secondary hypogonadism and compensated hypogonadism have also been observed. The underlying mechanism for primary hypogonadism was elucidated in a mouse model of SCD, and involves increased NADPH oxidase-derived oxidative stress in the testis, which reduces protein expression of a steroidogenic acute regulatory protein and cholesterol transport to the mitochondria in Leydig cells. In all men including those with SCD, hypogonadism affects physical growth and development, cognition and mental health, sexual function, as well as fertility. However, it is not understood whether declines in physical, psychological, and social domains of health in SCD patients are related to low testosterone, or are consequences of other abnormalities of SCD. Priapism is one of only a few complications of SCD that has been studied in the context of hypogonadism. In this pathologic condition of prolonged penile erection in the absence of sexual excitement or stimulation, hypogonadism exacerbates already impaired endothelial nitric oxide synthase/cGMP/phosphodiesterase-5 molecular signaling in the penis. While exogenous testosterone alleviates priapism, it disadvantageously decreases intratesticular testosterone production. In contrast to treatment with exogenous testosterone, a novel approach is to target the mechanisms of testosterone deficiency in the SCD testis to drive endogenous testosterone production, which potentially decreases further oxidative stress and damage in the testis, and preserves sperm quality. Stimulation of translocator protein within the transduceosome of the testis of SCD mice reverses both hypogonadism and priapism, without affecting intratesticular testosterone production and consequently fertility. Ongoing research is needed to define and develop therapies that restore endogenous testosterone production in a physiologic, mechanism-specific fashion without affecting fertility in SCD men.
Collapse
|