1
|
Soldevila-Matías P, Sánchez-Ortí JV, Correa-Ghisays P, Balanzá-Martínez V, Selva-Vera G, Sanchis-Sanchis R, Iglesias-García N, Monfort-Pañego M, Tomás-Martínez P, Victor VM, Crespo-Facorro B, Valenzuela CSM, Climent-Sánchez JA, Corral-Márquez R, Fuentes-Durá I, Tabarés-Seisdedos R. Clinical outcomes and anti-inflammatory mechanisms predict maximum heart rate improvement after physical activity training in individuals with psychiatric disorders and comorbid obesity. PLoS One 2025; 20:e0313759. [PMID: 39752432 PMCID: PMC11698373 DOI: 10.1371/journal.pone.0313759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION This study aimed to evaluate the predictive validity and discriminatory ability of clinical outcomes, inflammatory activity, oxidative and vascular damage, and metabolic mechanisms for detecting significant improve maximum heart rate after physical activity training in individuals with psychiatric disorders and obesity comorbid using a longitudinal design and transdiagnostic perspective. METHODS Patients with major depressive disorder, bipolar disorder and, schizophrenia and with comorbid obesity (n = 29) were assigned to a 12-week structured physical exercise program. Peripheral blood biomarkers of inflammation, oxidative stress, vascular mechanisms, and metabolic activity, as well as neurocognitive and functional performance were assessed twice, before and after intervention. Maximum heart rate was considered a marker of effectiveness of physical activity. Mixed one-way analysis of variance and linear regression analyses were performed. RESULTS Individuals with psychiatric disorders and comorbid obesity exhibited an improvement in cognition, mood symptoms and body mass index, increase anti-inflammatory activity together with enhancement of the oxidative and cardiovascular mechanisms after physical activity training (p<0.05 to 0.0001; d = 0.47 to 1.63). A better clinical outcomes along with regulation of inflammatory, oxidative, and cardiovascular mechanisms were critical for predicting significant maximum heart rate variation over time (χ2 = 32.2 to 39.0, p < 0.0001). CONCLUSIONS The regulation of the anti-inflammatory mechanisms may be essential for maintained of healthy physical activity across psychiatric disorders and obesity. Likewise, inflammatory activity, oxidative stress, vascular and cardio-metabolic mechanisms may be a useful to identify individuals at greater risk of multi-comorbidity.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Faculty of Psychology, University of Valencia, Valencia, Spain
- INCLIVA—Health Research Institute, Valencia, Spain
- Department of Psychology, Faculty of Health Sciences, European University of Valencia, Valencia, Spain
| | - Joan Vicent Sánchez-Ortí
- Faculty of Psychology, University of Valencia, Valencia, Spain
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
| | - Patricia Correa-Ghisays
- Faculty of Psychology, University of Valencia, Valencia, Spain
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
| | - Vicent Balanzá-Martínez
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
- VALSME (VALencia Salut Mental i Estigma) Research Group, University of Valencia, Valencia, Spain
| | - Gabriel Selva-Vera
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | | | - Néstor Iglesias-García
- Department of Didactics of Physical, Artistic and Music Education, University of Valencia, Valencia, Spain
| | - Manuel Monfort-Pañego
- Department of Didactics of Physical, Artistic and Music Education, University of Valencia, Valencia, Spain
| | | | - Víctor M. Victor
- INCLIVA—Health Research Institute, Valencia, Spain
- Service of Endocrinology and Nutrition, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Benedicto Crespo-Facorro
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Department of Psychiatry, University Hospital Virgen Del Rocio, IBIS-CSIC, University of Sevilla, Seville, Spain
| | - Constanza San Martin Valenzuela
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | | | - Inmaculada Fuentes-Durá
- Faculty of Psychology, University of Valencia, Valencia, Spain
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
| | - Rafael Tabarés-Seisdedos
- INCLIVA—Health Research Institute, Valencia, Spain
- TMAP—Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute Carlos III, Madrid, Spain
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Zaid NSN, Muhamad AS, Jawis MN, Ooi FK, Mohamed M, Mohamud R, Hamdan NF, Jusoh N. The Effect of Exercise on Immune Response in Population with Increased Risk Factors for Cardiovascular Disease: A Systematic Review. Malays J Med Sci 2024; 31:83-108. [PMID: 39416746 PMCID: PMC11477469 DOI: 10.21315/mjms2024.31.5.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/04/2024] [Indexed: 10/19/2024] Open
Abstract
This systematic review aimed to provide information on existing interventional studies that evaluate the efficacy of exercise in populations with increased cardiovascular disease (CVD) risk factors through immune functional perspectives. A literature search was conducted in four databases: PubMed, Scopus, Taylor & Francis and ScienceDirect from January 2012 to February 2023. The articles were screened and evaluated for quality before data were extracted. The review protocol was registered at PROSPERO (CRD42022321704). In total, 18 studies were included for quality appraisal and synthesised evidence indicated that exercise contributes to enhancing the functioning of both innate and adaptive immune responses, potentially serving as an anti-immunosenescent response to exercise in individuals with elevated CVD risk factors. Furthermore, the review emphasised that exercise, irrespective of its type, intensity or mode, was well tolerated by individuals at increased risk for CVD and may have significant implications in generating anti-inflammatory effects.
Collapse
Affiliation(s)
- Nik Siti Nik Zaid
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ayu Suzailiana Muhamad
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Nidzam Jawis
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Foong Kiew Ooi
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nor Faeiza Hamdan
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Normah Jusoh
- Faculty of Sports Science and Coaching, Universiti Pendidikan Sultan Idris, Perak, Malaysia
| |
Collapse
|
3
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
4
|
Sadat Hosseini N, Shirazpour S, Zangiabadizadeh M, Bashiri H, Dabiri S, Sepehri G, Shamsi Meymandi M. High-Intensity Interval Training Ameliorates Tramadol-Induced Nephrotoxicity and Oxidative Stress in Experimental Rats. Cureus 2024; 16:e62518. [PMID: 39022473 PMCID: PMC11253577 DOI: 10.7759/cureus.62518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Tramadol (TRA) is an opioid analgesic widely prescribed for moderate-to-severe pain; however, its abuse and chronic use have been associated with kidney damage. Considering the protective role of exercise training in reducing organ damage, this study aimed to assess the influence of high-intensity interval training (HIIT) on a male rat's kidney following chronic TRA administration. METHODS In this experimental study, 30 male Wistar rats were assigned to the following groups: control (CON; animals received normal saline five days a week in the first month and three days a week in the second month), exercise (EXE; animals conducted HIIT training according to exercise protocol five days a week for two months), TRA (animals received TRA 50 mg/kg (i.p.) as described for the CON group), EXE-TRA (animals received TRA and conducted exercise protocol), and EXE-SL (animals received normal saline and conducted exercise protocol). Then, serum IL-6 and IL-10 levels, tissue malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), and levels of albumin, urea, and creatinine (CR), along with pathological changes in the kidney, were measured. A p-value of <0.05 was considered significant using GraphPad Prism v.9 (GraphPad Software, La Jolla, California, USA). RESULTS The inflammatory cytokines IL-6 and IL-10 were significantly increased in the EXE and EXE-TRA groups compared to the TRA group. Chronic administration of TRA in the TRA group decreased antioxidant indicators TAC, GPx, and SOD in kidney tissue while increasing oxidative stress MDA compared to the CON group (p<0.05). In contrast, the EXE-TRA group showed higher levels of TAC, GPx, and SOD, while MDA decreased compared to the TRA group. Additionally, serum levels of urea and CR were increased in the TRA group compared to the CON group, whereas these levels were decreased in the EXE-TRA group compared to the TRA group. The inflammatory effect of HIIT training, due to severe hyperemia and mild inflammatory cell infiltration, was seen in all EXE groups. Pathological findings confirmed TRA-induced kidney damage through moderate hyaline cast presence and severe apoptosis in the TRA group. Other findings were in line with the above results. CONCLUSION These findings confirm the nephrotoxicity of chronic use of TRA through biochemical and oxidative markers and pathological outcomes. In addition, the result suggests that HIIT has the potential to mitigate the detrimental effects of TRA through reversing biochemical and oxidative markers, including TRA-induced apoptosis. Consequently, considering its restorative properties, HIIT could be explored as a prospective nephroprotective approach for long-term TRA treatment.
Collapse
Affiliation(s)
- Najmeh Sadat Hosseini
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Sara Shirazpour
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, IRN
| | - Mahla Zangiabadizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, IRN
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Manzumeh Shamsi Meymandi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| |
Collapse
|
5
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
6
|
Mohite R, Doshi G. A Review of Proposed Mechanisms in Rheumatoid Arthritis and Therapeutic Strategies for the Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:291-301. [PMID: 37861027 DOI: 10.2174/0118715303250834230923234802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by synovial edema, inflammation, bone and cartilage loss, and joint degradation. Patients experience swelling, stiffness, pain, limited joint movement, and decreased mobility as the condition worsens. RA treatment regimens often come with various side effects, including an increased risk of developing cancer and organ failure, potentially leading to mortality. However, researchers have proposed mechanistic hypotheses to explain the underlying causes of synovitis and joint damage in RA patients. This review article focuses on the role of synoviocytes and synoviocytes resembling fibroblasts in the RA synovium. Additionally, it explores the involvement of epigenetic regulatory systems, such as microRNA pathways, silent information regulator 1 (SIRT1), Peroxisome proliferatoractivated receptor-gamma coactivator (PGC1-α), and protein phosphatase 1A (PPM1A)/high mobility group box 1 (HMGB1) regulators. These mechanisms are believed to modulate the function of receptors, cytokines, and growth factors associated with RA. The review article includes data from preclinical and clinical trials that provide insights into potential treatment options for RA.
Collapse
Affiliation(s)
- Rupali Mohite
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
7
|
Zhang Y, Zhu M, Pan J, Qiu Q, Tong X, Hu X, Gong C. BmCPV replication is suppressed by the activation of the NF-κB/autophagy pathway through the interaction of vsp21 translated by vcircRNA_000048 with ubiquitin carboxyl-terminal hydrolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103947. [PMID: 37086910 DOI: 10.1016/j.ibmb.2023.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus, was demonstrated to generate a viral circRNA, vcircRNA_000048, which encodes a vsp21 with 21 amino acid residues to suppress viral replication. However, the regulatory mechanism of vsp21 on virus infection remained unclear. This study discovered that vsp21 induces reactive oxygen species (ROS) generation, activates autophagy, and attenuates virus replication by inducing autophagy. Then we confirmed that the effect of vsp21-induced autophagy on viral replication was attributed to the activation of the NF-κB signaling pathway. Furthermore, we clarified that vsp21 interacted with ubiquitin carboxyl-terminal hydrolase (UCH) and that ubiquitination and degradation of phospho-IκB-α were enhanced by vsp21 via competitive binding to UCH. Finally, we validated that vsp21 activates the NF-κB/autophagy pathway to suppress viral replication by interacting with UCH. These findings provided new insights into regulating viral multiplication and reovirus-host interaction.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Qunnan Qiu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
9
|
Baker C, Hunt J, Piasecki J, Hough J. Lymphocyte and dendritic cell response to a period of intensified training in young healthy humans and rodents: A systematic review and meta-analysis. Front Physiol 2022; 13:998925. [PMID: 36439269 PMCID: PMC9691956 DOI: 10.3389/fphys.2022.998925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Intensified training coupled with sufficient recovery is required to improve athletic performance. A stress-recovery imbalance can lead to negative states of overtraining. Hormonal alterations associated with intensified training, such as blunted cortisol, may impair the immune response. Cortisol promotes the maturation and migration of dendritic cells which subsequently stimulate the T cell response. However, there are currently no clear reliable biomarkers to highlight the overtraining syndrome. This systematic review and meta-analysis examined the effect of intensified training on immune cells. Outcomes from this could provide insight into whether these markers may be used as an indicator of negative states of overtraining. Methods: SPORTDiscus, PUBMED, Academic Search Complete, Scopus and Web of Science were searched until June 2022. Included articles reported on immune biomarkers relating to lymphocytes, dendritic cells, and cytokines before and after a period of intensified training, in humans and rodents, at rest and in response to exercise. Results: 164 full texts were screened for eligibility. Across 57 eligible studies, 16 immune biomarkers were assessed. 7 were assessed at rest and in response to a bout of exercise, and 9 assessed at rest only. Included lymphocyte markers were CD3+, CD4+ and CD8+ T cell count, NK cell count, NK Cytolytic activity, lymphocyte proliferation and CD4/CD8 ratio. Dendritic cell markers examined were CD80, CD86, and MHC II expression. Cytokines included IL-1β, IL-2, IL-10, TNF-α and IFN-γ. A period of intensified training significantly decreased resting total lymphocyte (d= -0.57, 95% CI -0.30) and CD8+ T cell counts (d= -0.37, 95% CI -0.04), and unstimulated plasma IL-1β levels (d= -0.63, 95% CI -0.17). Resting dendritic cell CD86 expression significantly increased (d = 2.18, 95% CI 4.07). All other biomarkers remained unchanged. Conclusion: Although some biomarkers alter after a period of intensified training, definitive immune biomarkers are limited. Specifically, due to low study numbers, further investigation into the dendritic cell response in human models is required.
Collapse
Affiliation(s)
- Carla Baker
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom,*Correspondence: Carla Baker,
| | - John Hunt
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, United Kingdom
| | - Jessica Piasecki
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| | - John Hough
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|