1
|
Xu Y, Cheng P, Zhang C, Huang Y. Temporal changes in Lycium barbarum fruit separation force and hardness during selective harvesting. J Food Sci 2024; 89:4704-4713. [PMID: 39013012 DOI: 10.1111/1750-3841.17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Lycium barbarum, a plant belonging to the Solanaceae family, is widely used in China due to its abundant nutritional value. Although the current mechanized harvesting method of L. barbarum has effectively minimized production expenses, it continues to have the challenge of inconsistent quality of the produced L. barbarum. The objective of this paper is to evaluate the correlation of the separating force and hardness concerning the timing of harvesting, maturity, and variety. Thus, the optimal time for harvesting ripe L. barbarum can be determined to enhance the quality of selectively mechanized harvesting of this fruit. The experiment was conducted in a L. barbarum plantation located in Qinghai Province during the 2023 harvest period. Two occasions were studied focusing on the primary cultivars Ningqi No. 1 and Ningqi No. 7, examining the three ripening stages of L. barbarum harvested at various times throughout the day. The finding of this study showed that the separation force and hardness of L. barbarum fruits were influenced by the harvesting time, the fruit variety, and the level of maturity. The optimal timing for harvesting different types of L. barbarum varies. It was observed that Ningqi No.1 was best to be harvested in the late afternoon and evening (17:00-21:00), whereas Ningqi No.7 was most suitable to be harvested in the morning (7:00-9:00).
Collapse
Affiliation(s)
- Yuhao Xu
- School of Technology, Beijing Forestry University, Beijing, China
| | - Pengle Cheng
- School of Technology, Beijing Forestry University, Beijing, China
| | - Cun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
2
|
Rodeo AJD, Mitcham EJ. Chilling temperatures and controlled atmospheres alter key volatile compounds implicated in basil aroma and flavor. FRONTIERS IN PLANT SCIENCE 2023; 14:1218734. [PMID: 37465380 PMCID: PMC10352081 DOI: 10.3389/fpls.2023.1218734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
Use of basil in its fresh form is increasingly popular due to its unique aromatic and sensory properties. However, fresh basil has a short shelf life and high chilling sensitivity resulting in leaf browning and loss of characteristic aroma. Moderate CO2 atmospheres have shown potential in alleviating symptoms of chilling injury in basil during short-term storage but its effect on the flavor volatiles is unclear. Moreover, studies on basil volatile profile as impacted by chilling temperatures are limited. We investigated the response of two basil genotypes to low temperatures and atmosphere modification, with emphasis on the volatile organic compounds responsible for basil aroma and flavor. Leaves were stored for 6 days at 5, 10, or 15°C combined with three different CO2 atmospheres (0.04%, 5% or 10%). Basil volatile profile was assessed using headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Leaves suffered severe chilling injury and greater loss of aroma volatiles at 5°C compared to 10°C and 15°C. More than 70 volatiles were identified for each genotype, while supervised multivariate analysis revealed 26 and 10 differentially-accumulated volatiles for 'Genovese' and 'Lemon' basil, respectively, stored at different temperatures. Storage in 5% CO2 ameliorated the symptoms of chilling injury for up to 3 days in 'Genovese', but not in 'Lemon' basil. Both chilling temperatures and controlled atmospheres altered key volatile compounds implicated in basil aroma and flavor, but temperature had a bigger influence on the observed changes in volatile profile.
Collapse
Affiliation(s)
- Arlan James D. Rodeo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Elizabeth J. Mitcham
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
CaCl 2 treatment effectively delays postharvest senescence of passion fruit. Food Chem 2023; 417:135786. [PMID: 36921365 DOI: 10.1016/j.foodchem.2023.135786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
This study aimed to systematically investigate the changes in peel color, physicochemical characteristics, textural properties, and peel ultrastructure between CaCl2-treated and water-soaked passion fruit under short-term storage at room temperature (20 °C) for eight days. The fruit peel was further analyzed and compared for the differences in calmodulin (CaM) gene expression between the two groups. The data were analyzed using principal component analysis. The results confirmed that CaCl2 treatment effectively maintained the appearance and color of passion fruit, inhibited peel browning, and improved fruit quality. The treatment had an effect on maintaining the physiological properties of passion fruit parenchyma, effectively delayed the passion fruit senescence, and kept the structural integrity of the fruit peel. The relative expression of PeCaM gene in the CaCl2-treated fruit peels was higher than that of the control peels. The Ca2+ stimulated the relative expression of the PeCaM gene, which delayed the senescence of passion fruit.
Collapse
|
4
|
Miguel MDG. Chemical and Biological Properties of Three Poorly Studied Species of Lycium Genus-Short Review. Metabolites 2022; 12:1265. [PMID: 36557303 PMCID: PMC9788301 DOI: 10.3390/metabo12121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The genus Lycium belongs to the Solanaceae family and comprises more than 90 species distributed by diverse continents. Lycium barbarum is by far the most studied and has been advertised as a “superfood” with healthy properties. In contrast, there are some Lycium species which have been poorly studied, although used by native populations. L. europaeum, L. intricatum and L. schweinfurthii, found particularly in the Mediterranean region, are examples of scarcely investigated species. The chemical composition and the biological properties of these species were reviewed. The biological properties of L. barbarum fruits are mainly attributed to polysaccharides, particularly complex glycoproteins with different compositions. Studies regarding these metabolites are practically absent in L. europaeum, L. intricatum and L. schweinfurthii. The metabolites isolated and identified belong mainly to polyphenols, fatty acids, polysaccharides, carotenoids, sterols, terpenoids, tocopherols, and alkaloids (L. europaeum); phenolic acids, lignans, flavonoids, polyketides, glycosides, terpenoids, tyramine derivatives among other few compounds (L. schweinfurthii), and esters of phenolic acids, glycosides, fatty acids, terpenoids/phytosterols, among other few compounds (L. intricatum). The biological properties (antioxidant, anti-inflammatory and cytotoxic against some cancer cell lines) found for these species were attributed to some metabolites belonging to those compound groups. Results of the study concluded that investigations concerning L. europaeum, L. intricatum and L. schweinfurthii are scarce, in contrast to L. barbarum.
Collapse
Affiliation(s)
- Maria da Graça Miguel
- Departamento de Química e Farmácia, Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Dong X, He Y, Yuan C, Cheng X, Li G, Shan Y, Zhu X. Controlled Atmosphere Improves the Quality, Antioxidant Activity and Phenolic Content of Yellow Peach during the Shelf Life. Antioxidants (Basel) 2022; 11:2278. [PMID: 36421464 PMCID: PMC9687445 DOI: 10.3390/antiox11112278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 04/10/2024] Open
Abstract
Controlled atmosphere (CA) has been demonstrated to maintain the shelf-life quality of fruits, but its effect on the antioxidant activities and phenolic content of yellow peach is not comprehensive. This study analyzed the role of CA on the quality of shelf period, phenolic content and antioxidant activity of "Jinxiu" yellow peach. Yellow peach was left under specific aeration conditions (3.5-4% CO2, 2-3% O2, 92-95.5% N2, 1 ± 0.5 °C) and the control (1 ± 0.5 °C) for 21 d, to observe changes in physiological parameters of the fruit during 10 d of the shelf life (25 ± 1 °C). The result showed that CA reduced the weight loss rate (WLR), decay rate (DR), and browning index (BI) of yellow peaches. Furthermore, the CA held a high level of total flavonoid content (TFC), total phenol content (TPC) and phenolic content in the fruit. Antioxidant analysis showed that polyphenol oxidase (PPO) enzyme activity was lower and free radical scavenging capacity (DPPH, ABTS, and FRAP) and antioxidant enzyme activities (POD and PAL) were higher in the CA group. Combining the results of significance analysis, correlation analysis, principal component analysis (PCA) and hierarchical cluster analysis (HCA) clearly identified the differences between the CA group and the control group. The results showed that the CA could maintain higher phenolic content and reduce the oxidation of yellow peach fruit and enhance fruit quality by affecting the antioxidant activities of yellow peach.
Collapse
Affiliation(s)
- Xinrui Dong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Yi He
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Chushan Yuan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Xiaomei Cheng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Xiangrong Zhu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Fruits and Vegetables Storage, Processing and Quality Safety, Changsha 410125, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha 410125, China
| |
Collapse
|