1
|
Zhang C, Feng L, Wu P, Liu Y, Jin X, Ren H, Li H, Wu F, Zhou X, Jiang W. Establishing the link between D-mannose and juvenile grass carp ( Ctenopharyngodon idella): Improved growth and intestinal structure associated with endoplasmic reticulum stress, mitophagy, and apical junctional complexes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:450-463. [PMID: 39315328 PMCID: PMC11417208 DOI: 10.1016/j.aninu.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
D-mannose, essential for protein glycosylation, has been reported to have immunomodulatory effects and to maintain intestinal flora homeostasis. In addition to evaluating growth performance, we examined the impact of D-mannose on the structure of epithelial cells and apical junction complexes in the animal intestine. All 1800 grass carp (16.20 ± 0.01 g) were randomly divided into six treatments with six replicates of 50 fish each and fed with six different levels of D-mannose (0.52, 1.75, 3.02, 4.28, 5.50 and 6.78 g/kg diet) for 70 d. The study revealed that D-mannose increased feed intake (P < 0.001) but did not affect the percent weight gain (PWG), special growth rate, and feed conversion ratio (P > 0.05). D-mannose supplementation at 1.75 g/kg increased crude protein content in fish and lipid production value (P < 0.05). D-mannose supplementation at 4.28 g/kg increased intestinal length, intestinal weight and fold height of grass carp compared to the control group (P < 0.05). This improvement may be attributed to the phosphomannose isomerase (PMI)-mediated enhancement of glycolysis. This study found that D-mannose supplementation at 4.28 or 3.02 g/kg reduced serum diamine oxidase activity or D-lactate content (P < 0.05) and improved cellular and intercellular structures for the first time. The improvement of cellular redox homeostasis involves alleviating endoplasmic reticulum (ER) stress through the inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling pathways. The alleviation of ER stress may be linked to the phosphomannomutase (PMM)-mediated enhancement of protein glycosylation. In addition, ubiquitin-dependent [PTEN-induced putative kinase 1 (PINK1)/Parkin] and ubiquitin-independent [BCL2-interacting protein 3-like (BNIP3L), BCL2-interacting protein 3 (BNIP3), and FUN14 domain containing 1 (FUNDC1)] mitophagy may play a role in maintaining cellular redox homeostasis. The enhancement of intercellular structures includes enhancing tight junction and adherent junction structures, which may be closely associated with the small Rho GTPase protein (RhoA)/the Rho-associated protein kinase (ROCK) signaling pathway. In conclusion, D-mannose improved intestinal cellular redox homeostasis associated with ER stress and mitophagy pathways, and enhanced intercellular structures related to tight junctions and adherent junctions. Furthermore, quadratic regression analysis of the PWG and intestinal reactive oxygen species content indicated that the optimal addition level of D-mannose for juvenile grass carp was 4.61 and 4.59 g/kg, respectively.
Collapse
Affiliation(s)
- Chong Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
2
|
Homolak J, Joja M, Grabaric G, Schiatti E, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. The Absence of Gastrointestinal Redox Dyshomeostasis in the Brain-First Rat Model of Parkinson's Disease Induced by Bilateral Intrastriatal 6-Hydroxydopamine. Mol Neurobiol 2024; 61:5481-5493. [PMID: 38200352 PMCID: PMC11249596 DOI: 10.1007/s12035-023-03906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The gut-brain axis plays an important role in Parkinson's disease (PD) by acting as a route for vagal propagation of aggregated α-synuclein in the gut-first endophenotype and as a mediator of gastrointestinal dyshomeostasis via the nigro-vagal pathway in the brain-first endophenotype of the disease. One important mechanism by which the gut-brain axis may promote PD is by regulating gastrointestinal redox homeostasis as overwhelming evidence suggests that oxidative stress plays a key role in the etiopathogenesis and progression of PD and the gastrointestinal tract maintains redox homeostasis of the organism by acting as a critical barrier to environmental and microbiological electrophilic challenges. The present aim was to utilize the bilateral intrastriatal 6-hydroxydopamine (6-OHDA) brain-first PD model to study the effects of isolated central pathology on redox homeostasis of the gastrointestinal tract. Three-month-old male Wistar rats were either not treated (intact controls; CTR) or treated bilaterally intrastriatally with vehicle (CIS) or 6-OHDA (6-OHDA). Motor deficits were assessed with the rotarod performance test, and the duodenum, ileum, and colon were dissected for biochemical analyses 12 weeks after the treatment. Lipid peroxidation, total antioxidant capacity, low-molecular-weight thiols, and protein sulfhydryls, the activity of total and Mn/Fe superoxide dismutases, and total and azide-insensitive catalase/peroxidase were measured. Both univariate and multivariate models analyzing redox biomarkers indicate that significant disturbances in gastrointestinal redox balance are not present. The findings demonstrate that motor impairment observed in the brain-first 6-OHDA model of PD can occur without concurrent redox imbalances in the gastrointestinal system.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Interfaculty Institute of Microbiology and Infection Medicine & Cluster of Excellence "Controlling Microbes to Fight Infections,", University of Tübingen, Tübingen, Germany.
| | - Mihovil Joja
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gracia Grabaric
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Emiliano Schiatti
- Faculty of Medicine and Surgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davor Virag
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| |
Collapse
|
3
|
Homolak J, Varvaras K, Sciacca V, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Insights into Gastrointestinal Redox Dysregulation in a Rat Model of Alzheimer's Disease and the Assessment of the Protective Potential of D-Galactose. ACS OMEGA 2024; 9:11288-11304. [PMID: 38496956 PMCID: PMC10938400 DOI: 10.1021/acsomega.3c07152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024]
Abstract
Recent evidence suggests that the gut plays a vital role in the development and progression of Alzheimer's disease (AD) by triggering systemic inflammation and oxidative stress. The well-established rat model of AD, induced by intracerebroventricular administration of streptozotocin (STZ-icv), provides valuable insights into the GI implications of neurodegeneration. Notably, this model leads to pathophysiological changes in the gut, including redox dyshomeostasis, resulting from central neuropathology. Our study aimed to investigate the mechanisms underlying gut redox dyshomeostasis and assess the effects of D-galactose, which is known to benefit gut redox homeostasis and alleviate cognitive deficits in this model. Duodenal rings isolated from STZ-icv animals and control groups were subjected to a prooxidative environment using 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) or H2O2 with or without D-galactose in oxygenated Krebs buffer ex vivo. Redox homeostasis was analyzed through protein microarrays and functional biochemical assays alongside cell survival assessment. Structural equation modeling and univariate and multivariate models were employed to evaluate the differential response of STZ-icv and control samples to the controlled prooxidative challenge. STZ-icv samples showed suppressed expression of catalase and glutathione peroxidase 4 (GPX4) and increased baseline activity of enzymes involved in H2O2 and superoxide homeostasis. The altered redox homeostasis status was associated with an inability to respond to oxidative challenges and D-galactose. Conversely, the presence of D-galactose increased the antioxidant capacity, enhanced catalase and peroxidase activity, and upregulated superoxide dismutases in the control samples. STZ-icv-induced gut dysfunction is characterized by a diminished ability of the redox regulatory system to maintain long-term protection through the transcription of antioxidant response genes as well as compromised activation of enzymes responsible for immediate antioxidant defense. D-galactose can exert beneficial effects on gut redox homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72074 Tübingen, Germany
| | - Konstantinos Varvaras
- Department
of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vittorio Sciacca
- Faculty
of Medicine, University of Catania, 95131 Catania, Italy
| | - Ana Babic Perhoc
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Virag
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Homolak J, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. D-galactose might mediate some of the skeletal muscle hypertrophy-promoting effects of milk-A nutrient to consider for sarcopenia? Bioessays 2024; 46:e2300061. [PMID: 38058119 DOI: 10.1002/bies.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Sarcopenia is a process of progressive aging-associated loss of skeletal muscle mass (SMM) recognized as a serious global health issue contributing to frailty and increased all-cause mortality. Exercise and nutritional interventions (particularly intake of dairy products and milk) demonstrate good efficacy, safety, and broad applicability. Here, we propose that at least some of the well-documented favorable effects of milk and milk-derived protein supplements on SMM might be mediated by D-galactose, a monosaccharide present in large quantities in milk in the form of disaccharide lactose (milk sugar). We suggest that ingestion of dairy products results in exposure to D-galactose in concentrations metabolized primarily via the Leloir pathway with the potential to (i) promote anabolic signaling via maintenance of growth factor (e.g., insulin-like growth factor 1 [IGF-1]) receptor mature glycosylation patterns; and (ii) provide extracellular (liver glycogen) and intracellular substrates for short (muscle glycolysis) and long-term (muscle glycogen, intramyocellular lipids) energy availability. Additionally, D-galactose might optimize the metabolic function of skeletal muscles by increasing mitochondrial content and stimulating glucose and fatty acid utilization. The proposed potential of D-galactose to promote the accretion of SMM is discussed in the context of its therapeutic potential in sarcopenia.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Virag D, Salkovic-Petrisic M. Exploratory Study of Gastrointestinal Redox Biomarkers in the Presymptomatic and Symptomatic Tg2576 Mouse Model of Familial Alzheimer's Disease: Phenotypic Correlates and Effects of Chronic Oral d-Galactose. ACS Chem Neurosci 2023; 14:4013-4025. [PMID: 37932005 PMCID: PMC10655039 DOI: 10.1021/acschemneuro.3c00495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The gut might play an important role in the etiopathogenesis of Alzheimer's disease (AD) as gastrointestinal alterations often precede the development of neuropathological changes in the brain and correlate with disease progression in animal models. The gut has an immense capacity to generate free radicals whose role in the etiopathogenesis of AD is well-known; however, it remains to be clarified whether gastrointestinal redox homeostasis is associated with the development of AD. The aim was to (i) examine gastrointestinal redox homeostasis in the presymptomatic and symptomatic Tg2576 mouse model of AD; (ii) investigate the effects of oral d-galactose previously shown to alleviate cognitive deficits and metabolic changes in animal models of AD and reduce gastrointestinal oxidative stress; and (iii) investigate the association between gastrointestinal redox biomarkers and behavioral alterations in Tg2576 mice. In the presymptomatic stage, Tg2576 mice displayed an increased gastrointestinal electrophilic tone, characterized by higher lipid peroxidation and elevated Mn/Fe-SOD activity. In the symptomatic stage, these alterations are rectified, but the total antioxidant capacity is decreased. Chronic oral d-galactose increased the antioxidant capacity and reduced lipid peroxidation in the Tg2576 but had the opposite effects in the wild-type animals. The total antioxidant capacity of the gastrointestinal tract was associated with greater spatial memory. Gut redox homeostasis might be involved in the development and progression of AD pathophysiology and should be further explored in this context.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, Tübingen 72076, Germany
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Homolak J. Gastrointestinal redox homeostasis in ageing. Biogerontology 2023; 24:741-752. [PMID: 37436501 DOI: 10.1007/s10522-023-10049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
The gastrointestinal (GI) barrier acts as the primary interface between humans and the external environment. It constantly faces the risk of inflammation and oxidative stress due to exposure to foreign substances and microorganisms. Thus, maintaining the structural and functional integrity of the GI barrier is crucial for overall well-being, as it helps prevent systemic inflammation and oxidative stress, which are major contributors to age-related diseases. A healthy gut relies on maintaining gut redox homeostasis, which involves several essential elements. Firstly, it requires establishing a baseline electrophilic tone and an electrophilic mucosal gradient. Secondly, the electrophilic system needs to have sufficient capacity to generate reactive oxygen species, enabling effective elimination of invading microorganisms and rapid restoration of the barrier integrity following breaches. These elements depend on physiological redox signaling mediated by electrophilic pathways such as NOX2 and the H2O2 pathway. Additionally, the nucleophilic arm of redox homeostasis should exhibit sufficient reactivity to restore the redox balance after an electrophilic surge. Factors contributing to the nucleophilic arm include the availability of reductive substrates and redox signaling mediated by the cytoprotective Keap1-Nrf2 pathway. Future research should focus on identifying preventive and therapeutic strategies that enhance the strength and responsiveness of GI redox homeostasis. These strategies aim to reduce the vulnerability of the gut to harmful stimuli and address the decline in reactivity often observed during the aging process. By strengthening GI redox homeostasis, we can potentially mitigate the risks associated with age-related gut dyshomeostasis and optimize overall health and longevity.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
7
|
Wei L, Zeng B, Zhang S, Guo W, Li F, Zhao J, Li Y. Hybridization altered the gut microbiota of pigs. Front Microbiol 2023; 14:1177947. [PMID: 37465027 PMCID: PMC10350513 DOI: 10.3389/fmicb.2023.1177947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Mammalian gut microbiota plays an important role in the host's nutrient metabolism, growth, and immune regulation. Hybridization can enable a progeny to acquire superior traits of the parents, resulting in the hybridization advantage. However, studies on the effects of hybridization on the pigs' gut microbiota are lacking. Therefore, this study used multi-omics technologies to compare and analyze the gut microbiota of the primary wild boar and its offspring. The 16S rRNA gene sequencing results revealed that the gut microbiota of F4 exhibited a host-like dominance phenomenon with a significant increase in the abundance of Lactobacillus and Bifidobacterium. The beta diversity of Duroc was significantly different from those of F0, F2, and F4; after the host hybridization, the similarity of the beta diversity in the progeny decreased with the decrease in the similarity of the F0 lineage. The metagenomic sequencing results showed that the significantly enriched metabolic pathways in F4, such as environmental, circulatory system, fatty acid degradation adaptation, and fatty acid biosynthesis, were similar to those in F0. Moreover, it also exhibited similar significantly enriched metabolic pathways as those in Duroc, such as carbohydrate metabolism, starch and sucrose metabolism, starch-degrading CAZymes, lactose-degrading CAZymes, and various amino acid metabolism pathways. However, the alpha-amylase-related KOs, lipid metabolism, and galactose metabolism in F4 were significantly higher than those in Duroc and F0. Non-targeted metabolome technology analysis found that several metabolites, such as docosahexaenoic acid, arachidonic acid, and citric acid were significantly enriched in the F4 pigs as compared to those in F0. Based on Spearman correlation analysis, Lactobacillus and Bifidobacterium were significantly positively correlated with these metabolites. Finally, the combined metagenomic and metabolomic analysis suggested that the metabolic pathways, such as valine, leucine, and isoleucine biosynthesis and alanine aspartate and glutamate metabolism were significantly enriched in F4 pigs. In conclusion, the gut microbiota of F4 showed a similar host "dominance" phenomenon, which provided reference data for the genetics and evolution of microbiota and the theory of microbial-assisted breeding.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
8
|
Homolak J, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. D-galactose might protect against ionizing radiation by stimulating oxidative metabolism and modulating redox homeostasis. JOURNAL OF RADIATION RESEARCH 2023:rrad046. [PMID: 37312584 DOI: 10.1093/jrr/rrad046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, Zagreb 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb 10 000, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, Zagreb 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb 10 000, Croatia
| | - Davor Virag
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, Zagreb 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb 10 000, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, Zagreb 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb 10 000, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, Zagreb 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb 10 000, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, Zagreb 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb 10 000, Croatia
| |
Collapse
|
9
|
Homolak J. Targeting the microbiota-mitochondria crosstalk in neurodegeneration with senotherapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:339-383. [PMID: 37437983 DOI: 10.1016/bs.apcsb.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are a group of age-related disorders characterized by a chronic and progressive loss of function and/or structure of synapses, neurons, and glial cells. The etiopathogenesis of neurodegenerative diseases is characterized by a complex network of intricately intertwined pathophysiological processes that are still not fully understood. Safe and effective disease-modifying treatments are urgently needed, but still not available. Accumulating evidence suggests that gastrointestinal dyshomeostasis and microbial dysbiosis might play an important role in neurodegeneration by acting as either primary or secondary pathophysiological factors. The research on the role of microbiota in neurodegeneration is in its early phase; however, accumulating evidence suggests that dysbiosis might promote neurodegenerative diseases by disrupting mitochondrial function and inducing mitochondrial dysfunction-associated senescence (MiDAS), possibly due to bidirectional crosstalk based on the common evolutionary origin of mitochondria and bacteria. Cellular senescence is an onco-supressive homeostatic mechanism that results in an irreversible cell cycle arrest upon exposure to noxious stimuli. Senescent cells resist apoptosis via senescent cell anti-apoptotic pathways (SCAPs) and transition into a state known as senescence-associated secretory phenotype (SASP) that generates a cytotoxic proinflammatory microenvironment. Cellular senescence results in the adoption of a detrimental vicious cycle driven by dysbiosis, mitochondrial dysfunction, inflammation, and oxidative stress - a pathophysiological positive feedback loop that results in neuroinflammation and neurodegeneration. Detrimental effects of MiDAS might be prevented and abolished by mitochondria-targeted senotherapeutics, a group of drugs specifically designed to alleviate senescence by inhibiting SCAPs (senolytics), or inhibiting SASP (senomorphics).
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
10
|
Dovom MR, Noroozzadeh M, Mosaffa N, Zadeh‐Vakili A, Piryaei A, Rahmati M, Azar MF, Tehrani FR. Continued exposure to D‐galactose in postnatal period may inhibit excessive primordial follicle reduction in rats exposed prenatally to D‐galactose. Birth Defects Res 2022; 114:1112-1122. [DOI: 10.1002/bdr2.2083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Marzieh Rostami Dovom
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Azita Zadeh‐Vakili
- Endocrine Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahbanoo Farhadi Azar
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
11
|
Homolak J. In vitro analysis of catalase and superoxide dismutase mimetic properties of blue tattoo ink. Free Radic Res 2022; 56:343-357. [PMID: 35848745 DOI: 10.1080/10715762.2022.2102976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Tattoo inks are comprised of different combinations of bioactive chemicals with combined biological effects that are insufficiently explored. Tattoos have been associated with oxidative stress; however, a recent N-of-1 study suggested that blue tattoos may be associated with suppressed local skin oxidative stress. The present study aimed to explore the attributes of the blue tattoo ink (BTI) that may explain its possible effects on redox homeostasis, namely the catalase (CAT) and superoxide dismutase (SOD)-mimetic properties that have been reported for copper(II) phthalocyanine (CuPC) - the main BTI constituent. Intenze™ Persian blue (PB) BTI has been used in the experiment. CAT and SOD-mimetic properties of PB and its pigment-enriched fractions were analyzed using the carbonato-cobaltate (III) formation-derived H2O2 dissociation and 1,2,3-trihydroxybenzene autoxidation rate assays utilizing simple buffers and biochemical matrix of normal skin tissue as chemical reaction environments. CuPC-based tattoo ink PB and both its blue and white pigment-enriched fractions demonstrate CAT and SOD-mimetic properties in vitro with effect sizes demonstrating a substantial dependence on the biochemical environment. PB constituents act as inhibitors of CAT but potentiate its activity in the biochemical matrix of the skin. CuPC-based BTI can mimic antioxidant enzymes, however chemical constituents other than CuPC (e.g. the photoreactive TiO2) seem to be at least partially responsible for the BTI redox-modulating properties.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
12
|
Homolak J, Kodvanj I, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Riederer P, Salkovic-Petrisic M. Nitrocellulose redox permanganometry: A simple method for reductive capacity assessment. MethodsX 2021; 9:101611. [PMID: 35004232 PMCID: PMC8718987 DOI: 10.1016/j.mex.2021.101611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
We propose a rapid, simple, and robust method for measurement of the reductive capacity of liquid and solid biological samples based on potassium permanganate reduction followed by trapping of manganese dioxide precipitate on a nitrocellulose membrane. Moreover, we discuss how nitrocellulose redox permanganometry (NRP) can be used for high-throughput analysis of biological samples and present HistoNRP, its modification used for detailed analysis of reductive capacity spatial distribution in tissue with preserved anatomical relations.•NRP is a rapid, cost-effective, and simple method for reductive capacity assessment•NRP is compatible with a high-throughput screening of solid and liquid biological samples•HistoNRP exploits passive diffusion slice print blotting for reductive capacity spatial analysis.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Research Centre of Excellence, Institute of Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|