1
|
Choudhary R, Kaushik R, Chawla P, Manna S. Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39077990 DOI: 10.1002/jsfa.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rajni Choudhary
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Suvendu Manna
- Sustainibility Cluster, School of Advance Engineering, UPES, Dehradun, India
| |
Collapse
|
2
|
García-Villegas A, Fernández-Ochoa Á, Alañón ME, Rojas-García A, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Bioactive Compounds and Potential Health Benefits through Cosmetic Applications of Cherry Stem Extract. Int J Mol Sci 2024; 25:3723. [PMID: 38612532 PMCID: PMC11011441 DOI: 10.3390/ijms25073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
3
|
Almeida CORP, Martinez RM, Figueiredo MS, Teodoro AJ. Botanical, nutritional, phytochemical characteristics, and potential health benefits of murici (Byrsonima crassifolia) and taperebá (Spondias mombin): insights from animal and cell culture models. Nutr Rev 2024; 82:407-424. [PMID: 37349898 DOI: 10.1093/nutrit/nuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Brazil has great biodiversity, and the Amazon biome stands out for a variety of native fruits with high economic and nutritional potential. Murici (Byrsonima crassifolia) and taperebá (Spondias mombin) are sources of vitamins, minerals, and phytochemicals with potential health benefits. Because of the bioactive potential of these Brazilian fruits, this review aims to gather the most current existing knowledge about their botanical, nutritional, and phytochemical properties, because the presence of several bioactive compounds may bring promising strategies to the prevention and treatment of several diseases. The search was conducted of the LILACS, MEDLINE, PubMed, and Science Direct databases, considering articles published between 2010 and 2023. The compiled results showed that these fruits, their leaves, and seeds have great antioxidant activity and are a good source of phytochemicals, especially phenolic compounds. In vitro and in vivo studies indicate that these bioactive compounds have several health benefits related to the prevention or treatment of diseases, including antioxidant effects; anti-inflammatory effects; and antidiabetic, antidepressant, neuroprotective, antiproliferative, anticancer, hypolipemic, cardioprotective, gastroprotective, hepatoprotective, and nephroprotective effects, and they are particularly related to the reduction of damage from oxidative stress. This review highlights the potential of these fruits as functional foods and for therapeutic purposes. However, it is recommended to conduct more studies on the identification and quantification of phytochemicals present in these fruits and studies in humans to better understand the mechanisms of action related to their effects and to understand the interaction of these compounds with the human body, as well as to prove the safety and efficacy of these compounds on health.
Collapse
Affiliation(s)
- Carolina O R P Almeida
- Graduate Program in Food and Nutrition, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel M Martinez
- Graduate Program in Food and Nutrition Security, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana S Figueiredo
- Nutrition and Dietetics Department, Universidade Federal Fluminense/Faculdade de Nutrição, Rio de Janeiro, RJ, Brazil
| | - Anderson J Teodoro
- Nutrition and Dietetics Department, Universidade Federal Fluminense/Faculdade de Nutrição, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Villegas-Aguilar MDC, Sánchez-Marzo N, Fernández-Ochoa Á, Del Río C, Montaner J, Micol V, Herranz-López M, Barrajón-Catalán E, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions against Different Therapeutic Targets. Antioxidants (Basel) 2024; 13:217. [PMID: 38397815 PMCID: PMC10886104 DOI: 10.3390/antiox13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant extracts rich in phenolic compounds have been reported to exert different bioactive properties. Despite the fact that there are plant extracts with completely different phenolic compositions, many of them have been reported to have similar beneficial properties. Thus, the structure-bioactivity relationship mechanisms are not yet known in detail for specific classes of phenolic compounds. In this context, this work aims to demonstrate the relationship of extracts with different phenolic compositions versus different bioactive targets. For this purpose, five plant matrices (Theobroma cacao, Hibiscus sabdariffa, Silybum marianum, Lippia citriodora, and Olea europaea) were selected to cover different phenolic compositions, which were confirmed by the phytochemical characterization analysis performed by HPLC-ESI-qTOF-MS. The bioactive targets evaluated were the antioxidant potential, the free radical scavenging potential, and the inhibitory capacity of different enzymes involved in inflammatory processes, skin aging, and neuroprotection. The results showed that despite the different phenolic compositions of the five matrices, they all showed a bioactive positive effect in most of the evaluated assays. In particular, matrices with very different phenolic contents, such as T. cacao and S. marianum, exerted a similar inhibitory power in enzymes involved in inflammatory processes and skin aging. It should also be noted that H. sabdariffa and T. cacao extracts had a low phenolic content but nevertheless stood out for their bioactive antioxidant and anti-radical capacity. Hence, this research highlights the shared bioactive properties among phenolic compounds found in diverse matrices. The abundance of different phenolic compound families highlights their elevated bioactivity against diverse biological targets.
Collapse
Affiliation(s)
| | - Noelia Sánchez-Marzo
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Carmen Del Río
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (C.D.R.); (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (C.D.R.); (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
5
|
García-Villegas A, Fernández-Ochoa Á, Rojas-García A, Alañón ME, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. The Potential of Mangifera indica L. Peel Extract to Be Revalued in Cosmetic Applications. Antioxidants (Basel) 2023; 12:1892. [PMID: 37891971 PMCID: PMC10603900 DOI: 10.3390/antiox12101892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The constant growth of the cosmetic industry, together with the scientific evidence of the beneficial properties of phytochemicals, has generated great interest in the incorporation of bioactive extracts in cosmetic formulations. This study aims to evaluate the bioactive potential of a mango peel extract for its incorporation into cosmetic formulations. For this purpose, several assays were conducted: phytochemical characterization; total phenolic content (TPC) and antioxidant potential; free-radical scavenging capacity; and skin aging-related enzyme inhibition. In addition, the extract was incorporated into a gel formulation, and a preliminary stability study was conducted where the accelerated (temperature ramp, centrifugation, and heating/cooling cycles) and long-term (storage in light and dark for three months) stability of the mango peel formulations were evaluated. The characterization results showed the annotation of 71 compounds, gallotannins being the most representative group. In addition, the mango peel extract was shown to be effective against the •NO radical with an IC50 of 7.5 mg/L and against the hyaluronidase and xanthine oxidase enzymes with IC50 of 27 mg/L and 2 mg/L, respectively. The formulations incorporating the extract were stable during the stability study. The results demonstrate that mango peel extract can be a by-product to be revalorized as a promising cosmetic ingredient.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
6
|
Siniawska M, Wojdyło A. Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract. Molecules 2023; 28:6711. [PMID: 37764487 PMCID: PMC10535944 DOI: 10.3390/molecules28186711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups-flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect.
Collapse
Affiliation(s)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
7
|
Badalkhani O, Pires PC, Mohammadi M, Babaie S, Paiva-Santos AC, Hamishehkar H. Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO 2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals (Basel) 2023; 16:ph16050670. [PMID: 37242453 DOI: 10.3390/ph16050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The human skin is a recurring target of external aggressions, such as UV radiation, leading to exacerbation of the aging process and the occurrence of skin diseases, such as cancer. Hence, preventive measures should be taken to protect it against these aggressions, consequently decreasing the chance of disease development. In the present study, a topical xanthan gum nanogel containing gamma-oryzanol-loaded nanostructured lipid carriers (NLCs) and nanosized UV filters TiO2 and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) was developed to assess their synergistic potential in having multifunctional skin beneficial properties. The developed NLCs contained the natural-based solid lipids shea butter and beeswax, liquid lipid carrot seed oil, and the potent antioxidant gamma-oryzanol, with an optimum particle size for topical application (<150 nm), good homogeneity (PDI = 0.216), high zeta potential (-34.9 mV), suitable pH value (6), good physical stability, high encapsulation efficiency (90%), and controlled release. The final formulation, a nanogel containing the developed NLCs and the nano UV filters, showed high long-term storage stability and high photoprotection ability (SPF = 34) and resulted in no skin irritation or sensitization (rat model). Hence, the developed formulation showed good skin protection and compatibility, demonstrating promise as a new platform for the future generation of natural-based cosmeceuticals.
Collapse
Affiliation(s)
- Omolbanin Badalkhani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Patrícia C Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
8
|
Sathya R, Valan Arasu M, Ilavenil S, Rejiniemon T, Vijayaraghavan P. Cosmeceutical potentials of litchi fruit and its by-products for a sustainable revalorization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Meryem S, Mohamed D, Nour-eddine C, Faouzi E. Chemical composition, antibacterial and antioxidant properties of three Moroccan citrus peel essential oils. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
10
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
11
|
Kobo GK, Kaseke T, Fawole OA. Micro-Encapsulation of Phytochemicals in Passion Fruit Peel Waste Generated on an Organic Farm: Effect of Carriers on the Quality of Encapsulated Powders and Potential for Value-Addition. Antioxidants (Basel) 2022; 11:antiox11081579. [PMID: 36009296 PMCID: PMC9404774 DOI: 10.3390/antiox11081579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The passion (Passiflora edulis Sims) fruit peel is rich in phenolics and other bioactive compounds and has great potential as a natural food preservative. The present study investigated the value-adding potential of passion fruit peel waste generated on an organic farm. The effect of carriers in encapsulating the peel extract to develop a polyphenolic-rich powder was investigated. The passion fruit peel extracts were prepared using 70% ethanol (1:10 w/v), and encapsulated using waxy starch (WS), gum arabic (GA), and maltodextrin (MT) before freeze-drying. The effects of carriers on the passion fruit peel powder (PFPP) production yield, physicochemical, rheological, phytochemical, and antioxidant properties were investigated. GA-and MT-encapsulated powders had better physical, phytochemical, and antioxidant properties, including yield, total soluble solids, solubility, bulk density, total phenolic content, and ferric reducing antioxidant powder. A total of 18 metabolites, including phenolic acids (10), flavonoids (6), and stilbenes (2), were tentatively identified in all the PFPP samples, with WS exhibiting a higher concentration of the compounds compared to GA and MT. Our results indicated that no single carrier was associated with all the quality attributes; therefore, better results could be produced by compositing these carriers. Nonetheless, our results highlight the potential of passion fruit peels as a source of polyphenols and functional ingredient in formulating natural food additives.
Collapse
Affiliation(s)
- Gift Kabelo Kobo
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
| | - Tafadzwa Kaseke
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Correspondence:
| |
Collapse
|
12
|
Leyva-Jiménez FJ, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Lozano-Sánchez J, Oliver-Simancas R, Alañón ME, Castangia I, Segura-Carretero A, Arráez-Román D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants (Basel) 2022; 11:antiox11081552. [PMID: 36009270 PMCID: PMC9404794 DOI: 10.3390/antiox11081552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, green and advanced extraction technologies have gained great interest to revalue several food by-products. This by-product revaluation is currently allowing the development of high value-added products, such as functional foods, nutraceuticals, or cosmeceuticals. Among the high valued-added products, cosmeceuticals are innovative cosmetic formulations which have incorporated bioactive natural ingredients providing multiple benefits on skin health. In this context, the extraction techniques are an important step during the elaboration of cosmetic ingredients since they represent the beginning of the formulation process and have a great influence on the quality of the final product. Indeed, these technologies are claimed as efficient methods to retrieve bioactive compounds from natural sources in terms of resource utilization, environmental impact, and costs. This review offers a summary of the most-used green and advanced methodologies to obtain cosmetic ingredients with the maximum performance of these extraction techniques. Response surface methodologies may be applied to enhance the optimization processes, providing a simple way to understand the extraction process as well as to reach the optimum conditions to increase the extraction efficiency. The combination of both assumes an economic improvement to attain high value products that may be applied to develop functional ingredients for cosmetics purposes.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Rodrigo Oliver-Simancas
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - M. Elena Alañón
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Ines Castangia
- Deparment of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
13
|
Development of an Effective Sonotrode Based Extraction Technique for the Recovery of Phenolic Compounds with Antioxidant Activities in Cherimoya Leaves. PLANTS 2022; 11:plants11152034. [PMID: 35956511 PMCID: PMC9370491 DOI: 10.3390/plants11152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
The leaves of Annona cherimola Mill (cherimoya) are a potential source of phenolic compounds that have been shown to have beneficial properties. Therefore, this study focuses on establishing an ultrasonic-assisted extraction of phenolic compounds in cherimoya leaves using a sonotrode. For that purpose, a Box-Behnken design based on a response surface methodology (RSM) was used to optimize factors, such as amplitude, extraction time and solvent composition to obtain the maximum content of phenolic compounds by HPLC-MS and the maximum in-vitro antioxidant activity by DPPH, ABTS and FRAP assays in ‘Fino de Jete’ cherimoya leaves. The optimal conditions were 70% amplitude, 10 min and 40:60 ethanol/water (EtOH/H2O) (v/v). The results obtained under these optimum conditions by using a sonotrode were compared with those from an ultrasonic bath; briefly, recovery of phenolic compounds by sonotrode was 2.3 times higher than a bath. Therefore, these optimal conditions were applied to different varieties ‘Campas’, ‘Fino de Jete’ and ‘Negrito Joven’ harvested in the Tropical Coast of Granada (Spain). A total of 39 phenolic compounds were determined in these cherimoya leaf extracts, 24 phenolic compounds by HPLC-MS and 15 proanthocianidins by HPLC-FLD. 5-p-coumaroylquinic acid, lathyroside-7-O-α-l-rhamnopyranoside and quercetin hexose acetate were first identified in cherimoya leaves. The most concentrated phenolic compounds were the flavonoids, such as rutin and quercetin hexoside and proanthocyanidins including monomers. Almost no significant differences in the phenolic content in these cultivars were found (11–13 mg/g d.w. for phenolic compounds and 11–20 mg/g d.w. for proanthocyanidins). In addition, sonotrode ultrasonic-assisted extraction has been shown to be an efficient extraction technique in the phenolic recovery from cherimoya leaves that could be implemented on an industrial scale.
Collapse
|