1
|
Wen H, Huang R, Xu X, Xiong Z, Liu M, Guo Y, Zhuang X, Liao X. Prognostic significance of aortic valve calcification in relation to coronary artery calcification for cardiovascular diseases. Eur J Prev Cardiol 2024; 31:1173-1182. [PMID: 38394450 DOI: 10.1093/eurjpc/zwae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
AIMS Both coronary artery calcification (CAC) and aortic valve calcification (AVC) are strongly associated with cardiovascular diseases (CVDs), but data about the prognostic significance of multiple cardiovascular calcifications are limited. We aim to investigate the interaction relationship between AVC and CAC for major events. METHODS AND RESULTS We included 6695 participants from the Multi-Ethnic Study of Atherosclerosis at baseline and divided them into four groups: (i) no AVC or CAC; (ii) only AVC; (iii) only CAC; and (iv) with CAC and CAC. The Cox regression model and the Kaplan-Meier method were used to analyse CVD outcomes. We evaluated the interaction between AVC and CAC and their added predictive value based on the pooled cohort equations (PCEs). Subgroup analyses were also explored. Among 6695 participants (mean age 62.2 ± 10.2 years, 47.2% male), after follow-up, 943 cases (14.1%) of CVD and 1274 cases (19.0%) of all-cause death occurred. For participants with both AVC and CAC, the risk of CVD significantly increased [hazard ratio = 3.43 (2.69-4.37), P < 0.001], even higher than the sum of the ones with only AVC and only CAC. This trend remained the same for all-cause death and among subgroup analyses. The addictive interaction was statistically significant (P < 0.001). When AVC and CAC were added, the predictive value of PCEs increased. CONCLUSION Our results indicated a synergistic interaction between valve calcification and coronary calcification in CVDs. Management for both AVC and CAC may bring health co-benefits in preventing poor outcomes.
Collapse
Affiliation(s)
- Han Wen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Rihua Huang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xinghao Xu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Zhenyu Xiong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Menghui Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yue Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| |
Collapse
|
2
|
Sastre-Oliva T, Corbacho-Alonso N, Rodriguez-Sanchez E, Mercado-García E, Perales-Sanchez I, Hernandez-Fernandez G, Juarez-Alia C, Tejerina T, López-Almodóvar LF, Padial LR, Sánchez PL, Martín-Núñez E, López-Andrés N, Ruiz-Hurtado G, Mourino-Alvarez L, Barderas MG. Albumin Redox Modifications Promote Cell Calcification Reflecting the Impact of Oxidative Status on Aortic Valve Disease and Atherosclerosis. Antioxidants (Basel) 2024; 13:108. [PMID: 38247532 PMCID: PMC10812654 DOI: 10.3390/antiox13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Calcific aortic valve disease (CAVD) and coronary artery disease (CAD) are related cardiovascular diseases in which common mechanisms lead to tissue calcification. Oxidative stress plays a key role in these diseases and there is also evidence that the redox state of serum albumin exerts a significant influence on these conditions. To further explore this issue, we used multimarker scores (OxyScore and AntioxyScore) to assess the global oxidative status in patients with CAVD, with and without CAD, also evaluating their plasma thiol levels. In addition, valvular interstitial cells were treated with reduced, oxidized, and native albumin to study how this protein and its modifications affect cell calcification. The differences we found suggest that oxidative status is distinct in CAVD and CAD, with differences in redox markers and thiol levels. Importantly, the in vitro interstitial cell model revealed that modified albumin affects cell calcification, accelerating this process. Hence, we show here the importance of the redox system in the development of CAVD, emphasizing the relevance of multimarker scores, while also offering evidence of how the redox state of albumin influences vascular calcification. These data highlight the relevance of understanding the overall redox processes involved in these diseases, opening the door to new studies on antioxidants as potential therapies for these patients.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elena Rodriguez-Sanchez
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
| | - Ines Perales-Sanchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Luis F. López-Almodóvar
- Cardiac Surgery, Hospital General Universitario de Toledo, Servicio de Salud de Castilla-La Mancha (SESCAM), 45007 Toledo, Spain;
| | - Luis R. Padial
- Department of Cardiology, Hospital General Universitario de Toledo, Servicio de Salud de Castilla-La Mancha (SESCAM), 45007 Toledo, Spain;
| | - Pedro L. Sánchez
- Department of Cardiology, Hospital Universitario de Salamanca-Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.M.-N.); (N.L.-A.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.M.-N.); (N.L.-A.)
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
3
|
Knoke LR, Leichert LI. Global approaches for protein thiol redox state detection. Curr Opin Chem Biol 2023; 77:102390. [PMID: 37797572 DOI: 10.1016/j.cbpa.2023.102390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Due to its nucleophilicity, the thiol group of cysteine is chemically very versatile. Hence, cysteine often has important functions in a protein, be it as the active site or, in extracellular proteins, as part of a structural disulfide. Within the cytosol, cysteines are typically reduced. But the nucleophilicity of its thiol group makes it also particularly prone to post-translational oxidative modifications. These modifications often lead to an alteration of the function of the affected protein and are reversible in vivo, e.g. by the thioredoxin and glutaredoxin system. The in vivo-reversible nature of these modifications and their genesis in the presence of localized high oxidant levels led to the paradigm of thiol-based redox regulation, the adaptation, and modulation of the cellular metabolism in response to oxidative stimuli by thiol oxidation in regulative proteins. Consequently, the proteomic study of these oxidative posttranslational modifications of cysteine plays an indispensable role in redox biology.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
4
|
Stair ER, Hicks LM. Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation. Curr Opin Chem Biol 2023; 77:102389. [PMID: 37776664 DOI: 10.1016/j.cbpa.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The post-translational modification of cysteine to diverse oxidative states is understood as a critical cellular mechanism to combat oxidative stress. To study the role of cysteine oxidation, cysteine enrichments and subsequent analysis via mass spectrometry are necessary. As such, technologies and methods are rapidly developing for sensitive and efficient enrichments of cysteines to further explore its role in signaling pathways. In this review, we analyze recent developments in methods to miniaturize cysteine enrichments, analyze the underexplored disulfide bound redoxome, and quantify site-specific cysteine oxidation. We predict that further development of these methods will improve cysteine coverage across more diverse organisms than those previously studied and elicit novel roles cysteines play in stress response.
Collapse
Affiliation(s)
- Evan R Stair
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Savini C, Tenti E, Mikus E, Eligini S, Munno M, Gaspardo A, Gianazza E, Greco A, Ghilardi S, Aldini G, Tremoli E, Banfi C. Albumin Thiolation and Oxidative Stress Status in Patients with Aortic Valve Stenosis. Biomolecules 2023; 13:1713. [PMID: 38136584 PMCID: PMC10742097 DOI: 10.3390/biom13121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Recent evidence indicates that reactive oxygen species play an important causative role in the onset and progression of valvular diseases. Here, we analyzed the oxidative modifications of albumin (HSA) occurring on Cysteine 34 and the antioxidant capacity of the serum in 44 patients with severe aortic stenosis (36 patients underwent aortic valve replacement and 8 underwent a second aortic valve substitution due to a degenerated bioprosthetic valve), and in 10 healthy donors (controls). Before surgical intervention, patients showed an increase in the oxidized form of albumin (HSA-Cys), a decrease in the native reduced form (HSA-SH), and a significant reduction in serum free sulfhydryl groups and in the total serum antioxidant activity. Patients undergoing a second valve replacement showed levels of HSA-Cys, free sulfhydryl groups, and total antioxidant activity similar to those of controls. In vitro incubation of whole blood with aspirin (ASA) significantly increased the free sulfhydryl groups, suggesting that the in vivo treatment with ASA may contribute to reducing oxidative stress. We also found that N-acetylcysteine and its amide derivative were able to regenerate HSA-SH. In conclusion, the systemic oxidative stress reflected by high levels of HSA-Cys is increased in patients with aortic valve stenosis. Thiol-disulfide breaking agents regenerate HSA-SH, thus paving the way to the use these compounds to mitigate the oxidative stress occurring in the disease.
Collapse
Affiliation(s)
- Carlo Savini
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy
| | - Elena Tenti
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Elisa Mikus
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Marco Munno
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Anna Gaspardo
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Erica Gianazza
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy;
| | - Elena Tremoli
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| |
Collapse
|
6
|
Corbacho-Alonso N, Rodríguez-Sánchez E, Sastre-Oliva T, Mercado-García E, Perales-Sánchez I, Juarez-Alia C, López-Almodovar LF, Padial LR, Tejerina T, Mourino-Alvarez L, Ruiz-Hurtado G, Barderas MG. Global Oxidative Status Is Linked to Calcific Aortic Stenosis: The Differences Due to Diabetes Mellitus and the Effects of Metformin. Antioxidants (Basel) 2023; 12:1024. [PMID: 37237890 PMCID: PMC10215415 DOI: 10.3390/antiox12051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Calcific aortic stenosis (CAS) and type 2 diabetes mellitus (T2DM) are related and often concomitant pathologies, accompanied by common comorbidities such as hypertension or dyslipidemia. Oxidative stress is one of the mechanisms that trigger CAS, and it can drive the vascular complications in T2DM. Metformin can inhibit oxidative stress, yet its effects have not been studied in the context of CAS. Here, we assessed the global oxidative status in plasma from patients with CAS, both alone and with T2DM (and under treatment with metformin), using multimarker scores of systemic oxidative damage (OxyScore) and antioxidant defense (AntioxyScore). The OxyScore was determined by measuring carbonyls, oxidized LDL (oxLDL), 8-hydroxy-20-deoxyguanosine (8-OHdG), and xanthine oxidase (XOD) activity. In contrast, the AntioxyScore was determined through the catalase (CAT) and superoxide dismutase (SOD) activity, as well as the total antioxidant capacity (TAC). Patients with CAS displayed enhanced oxidative stress compared to control subjects, probably exceeding their antioxidant capacity. Interestingly, patients with CAS and T2DM displayed less oxidative stress, possibly due to the benefits of their pharmacological therapy (metformin). Thus, reducing oxidative stress or enhancing antioxidant capacity through specific therapies could be a good strategy to manage CAS, focusing on personalized medicine.
Collapse
Affiliation(s)
- Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ines Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | | | - Luis R. Padial
- Department of Cardiology, Hospital General Universitario de Toledo, SESCAM, 45007 Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, CIBER-CV Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|