1
|
Hashizume T, Munakata S, Takahashi T, Watanabe T. Exploring the role of oxidative stress and mitochondrial dysfunction in β-damascone-induced aneuploidy. Genes Environ 2024; 46:25. [PMID: 39587702 PMCID: PMC11590541 DOI: 10.1186/s41021-024-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The rose ketone β-damascone (β-Dam) elicits positive results in the in vitro micronucleus (MN) assay using human lymphocytes, but shows negative outcomes in the Ames test and combined in vivo MN and comet assays. This has led to the interpretation that the in vitro MN result is a misleading positive result. Oxidative stress has been suggested as an indirect mode of action (MoA) for in vitro MN formation, with the α, β-unsaturated carbonyl moiety of the β-Dam chemical structure expected to cause misleading positive results through this MoA. In this study, we investigated the role of oxidative stress in β-Dam-induced in vitro MN formation by co-treatment with the antioxidant N-acetyl-L-cysteine (NAC), thereby highlighting a possible link between mitochondrial dysfunction and aneugenicity. RESULTS β-Dam induced MN formation in both CHL/IU and BEAS-2B cells, with the response completely inhibited by co-treatment with NAC. Moreover, β-Dam induced oxidative stress-related reporter activity in the ToxTracker assay and increased reactive oxygen species levels, while decreasing glutathione levels, in BEAS-2B cells in the high-content analysis. All of these effects were suppressed by NAC co-treatment. These findings indicate that β-Dam elicits oxidative stress, which causes DNA damage and ultimately leads to MN induction. However, no significant DNA damage-related reporter activities were observed in the ToxTracker assay, nor was there an increased number of γH2AX foci in the high-content analysis. These data suggest that MN formation is not a DNA-reactive MoA. Considering recent reports of aneuploidy resulting from chromosome segregation defects caused by mitochondrial dysfunction, we investigated if β-Dam could cause such dysfunction. We observed that the mitochondrial membrane potential was dose-dependently impaired in BEAS-2B cells exposed to β-Dam. CONCLUSIONS These findings suggest that the oxidative stress induced by β-Dam exposure may be explained through an aneugenic MoA via mitochondrial dysfunction, thereby contributing to MN formation in mammalian cells.
Collapse
Affiliation(s)
- Tsuneo Hashizume
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Satoru Munakata
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Tomohiro Takahashi
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Taku Watanabe
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
2
|
Carvalho EPD, Pessoa ADS, Iano FG, Ribeiro L, Leme B, Borges LF, Sanches MLR, Ximenes VF, Oliveira RCD. Antitumor effect of bromo-naphthoquinone associated with tannic acid in triple negative breast cancer cells. Int J Biochem Cell Biol 2024; 177:106697. [PMID: 39566654 DOI: 10.1016/j.biocel.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of tumor that tends to recur in women. It is characterized by the absence of hormonal receptors, making it challenging to diagnosis and treatment. In this study, we investigated the anti-tumor effects of a pro-oxidant naphthoquinone derivative called bromo-naphthoquinone (BrNQ) isolated and combined with the antioxidant tannic acid (TA) in order to improve treatment. We used tumor cell lines MDA-MB-231 and HCC-70, as well as normal breast cells, HB4a, as control. Initially, viability assays conducted within 72 hours showed that the combination of compounds had a synergistic and notable cytotoxic effect on the tumor cells. The increased cytotoxicity appeared to be linked to changes in the cellular redox status, as indicated by a significant rise in reactive oxygen species (ROS) and though alterations in the level of thiol. The treatment also induced apoptosis, inhibited proliferation, and reduced migration, particularly in the MDA-MB-231 cell line. Furthermore, relevant changes were detected in the expression of Bcl-2, BAX, FAS, and BIRC-5, while no significant alteration in the expression of NOXs was observed. In conclusion, our findings suggested that the combination of BrNQ and TA though the ability to change redox status in tumor cells could act as a potential adjuvant treatment modality for improve prognosis in TNBC.
Collapse
Affiliation(s)
| | - Adriano de Souza Pessoa
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Flávia Godoy Iano
- Department of Preventive and Restorative Pediatric Dentistry, Araçatuba School of Dentistry, São Paulo State University, Brazil
| | - Laura Ribeiro
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Bianca Leme
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Luis Francisco Borges
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | - Valdecir Farias Ximenes
- Department of Chemistry, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | | |
Collapse
|
3
|
Abramov AY, Myers I, Angelova PR. Carbon Monoxide: A Pleiotropic Redox Regulator of Life and Death. Antioxidants (Basel) 2024; 13:1121. [PMID: 39334780 PMCID: PMC11428877 DOI: 10.3390/antiox13091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Despite recent technological progress, carbon monoxide poisoning is still one of the leading causes of domestic and industrial morbidity and mortality. The brain is particularly vulnerable to CO toxicity, and thus the majority of survivors develop delayed movement and cognitive complications. CO binds to haemoglobin in erythrocytes, preventing oxygen delivery to tissues, and additionally inhibits mitochondrial respiration. This renders the effect of CO to be closely related to hypoxia reperfusion injury. Oxygen deprivation, as well as CO poisoning and re-oxygenation, are shown to be able to activate the production of reactive oxygen species and to induce oxidative stress. Here, we review the role of reactive oxygen species production and oxidative stress in the mechanism of neuronal cell death induced by carbon monoxide and re-oxygenation. We discuss possible protective mechanisms used by brain cells with a specific focus on the inhibition of CO-induced ROS production and oxidative stress.
Collapse
Affiliation(s)
| | | | - Plamena R. Angelova
- UCL Queen Square Institute of Neurology, Department of Clinical and Movement Neurosciences, Queen Square, London WC1N3BG, UK; (A.Y.A.); (I.M.)
| |
Collapse
|
4
|
Zoughaib M, Pashirova TN, Nikolaeva V, Kamalov M, Nakhmetova F, Salakhieva DV, Abdullin TI. Anticancer and Chemosensitizing Effects of Menadione-Containing Peptide-Targeted Solid Lipid Nanoparticles. J Pharm Sci 2024; 113:2258-2267. [PMID: 38508340 DOI: 10.1016/j.xphs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Vitamin K derivatives such as menadione (MD) have been recognized as promising redox-modulating and chemosensitizing agents for anticancer therapy, however, their cellular activities in peptide-targeted nanocarriers have not been elucidated to date. This study provides the guidelines for developing MD-loaded solid lipid nanoparticles (SLN) modified with extracellular matrix (ECM)-derived peptides. Relationships between RGD peptide concentration and changes in DLS characteristics as well as accumulation of SLN in cancer cells were revealed to adjust the peptide-lipid ratio. SLN system maintained adequate nanoparticle concentration and low dispersity after introduction of MD and MD/RGD, whereas formulated MD was protected from immediate conjugation with reduced glutathione (GSH). RGD-modified MD-containing SLN showed enhanced prooxidant, GSH-depleting and cytotoxic activities toward PC-3 prostate cancer cells attributed to improved cellular pharmacokinetics of the targeted formulation. Furthermore, this formulation effectively sensitized PC-3 cells and OVCAR-4 ovarian cancer cells to free doxorubicin and cisplatin so that cell growth was inhibited by MD-drug composition at nontoxic concentrations of the ingredients. These results provide an important background for further improving chemotherapeutic methods based on combination of conventional cytostatics with peptide-targeted SLN formulations of MD.
Collapse
Affiliation(s)
- Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov St., 420088 Kazan, Russia
| | - Viktoriia Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Fidan Nakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| |
Collapse
|
5
|
Fotopoulou T, Papadopoulou A, Tzani A, Mamais M, Mavrogonatou E, Pratsinis H, Koufaki M, Kletsas D, Calogeropoulou T. Design and Synthesis of Novel Antioxidant 2-Substituted-5,7,8-Trimethyl-1,4-Benzoxazine Hybrids: Effects on Young and Senescent Fibroblasts. Antioxidants (Basel) 2024; 13:798. [PMID: 39061867 PMCID: PMC11274006 DOI: 10.3390/antiox13070798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The exponential growth of the aged population worldwide is followed by an increase in the prevalence of age-related disorders. Oxidative stress plays central role in damage accumulation during ageing and cell senescence. Thus, a major target of today's anti-ageing research has been focused on antioxidants counteracting senescence. In the current work, six novel 5,7,8-trimethyl-1,4-benzoxazine/catechol or resorcinol hybrids were synthesized connected through a methoxymethyl-1,2,3-triazolyl or a 1,2,3-triazoly linker. The compounds were evaluated for their antioxidant capacity in a cell-free system and for their ability to reduce intracellular ROS levels in human skin fibroblasts, both young (early-passage) and senescent. The most efficient compounds were further tested in these cells for their ability to induce the expression of the gene heme oxygenase-1 (ho-1), known to regulate redox homeostasis, and cellular glutathione (GSH) levels. Overall, the two catechol derivatives were found to be more potent than the resorcinol analogues. Furthermore, these two derivatives were shown to act coordinately as radical scavengers, ROS inhibitors, ho-1 gene expression inducers, and GSH enhancers. Interestingly, one of the two catechol derivatives was also found to enhance human skin fibroblast viability. The properties of the synthesized compounds support their potential use in cosmetic applications, especially in products targeting skin ageing.
Collapse
Affiliation(s)
- Theano Fotopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Adamantia Papadopoulou
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Andromachi Tzani
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Michail Mamais
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Eleni Mavrogonatou
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Harris Pratsinis
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Maria Koufaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Dimitris Kletsas
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| |
Collapse
|
6
|
Nikolaeva V, Kamalov M, Abdullin TI, Salakhieva D, Chasov V, Rogov A, Zoughaib M. Evaluation of GHK peptide-heparin interactions in multifunctional liposomal covering. J Liposome Res 2024; 34:18-30. [PMID: 37144381 DOI: 10.1080/08982104.2023.2206894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 05/06/2023]
Abstract
Small biospecific peptides with defined chemical structure and cellular responses are promising alternatives to full-length therapeutic proteins. Identification of these peptides solely or in combination with other bioactive factors and determination of their targets are of substantial interest in current drug delivery research. This study is aimed at the development of new liposomal formulations of ECM-derived GHK peptide known for its multiple regeneration-related activities but poorly recognized cellular targets. In situ association of membranotropic GHK derivative with unilamellar liposomes was performed to prepare GHK-modified liposomes with defined properties. According to DLS, the GHK component on the liposomal surface interacted with heparin in a specific manner compared to other polysaccharides and RGD counterpart, whereas ITC analysis of such interactions was complicated. The results provide a useful tool for screening of bio-interactions of synthetic peptide-presenting liposomes by the DLS technique. They were also employed to produce a multi-functional nanosized GHK-heparin covering for liposomes. The resulting composite liposomes possessed low size dispersity, increased anionic charge, and mechanical rigidity. The heparin component significantly promoted the accumulation of GHK-modified liposomes in 3T3 fibroblasts so that the composite liposomes exhibited the highest cell-penetrating activity. Furthermore, the latter formulation stimulated cell proliferation and strongly inhibited ROS production and GSH depletion under oxidative stress conditions. Together, the results support that cell-surface glycosaminoglycans can be involved in GHK-mediated liposomal delivery, which can be further greatly enhanced by association with heparin. The composite liposomes with GHK-heparin covering can be considered as an advanced GHK-based formulation for therapeutic and cosmeceutical applications.
Collapse
Affiliation(s)
- Viktoriia Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Marat Kamalov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Diana Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
7
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Kavvoura DA, Stefanakis MK, Kletsas D, Katerinopoulos HE, Pratsinis H. Biological Activities of Ceratonia siliqua Pod and Seed Extracts: A Comparative Analysis of Two Cretan Cultivars. Int J Mol Sci 2023; 24:12104. [PMID: 37569477 PMCID: PMC10418674 DOI: 10.3390/ijms241512104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Ceratonia siliqua L., commonly known as the carob tree, appears in most Mediterranean countries, often cultivated for the collection of its fruits to be used as food for humans and animals. This study was aimed at the phytochemical characterization of two common Cretan C. siliqua cultivars and the biological evaluation of deseeded pod and seed extracts regarding their putative use in cosmetics. Gas and liquid chromatographic techniques were used to assess their essential oil, fatty acid, and carbohydrate profiles. Cell-free assays, including free-radical scavenging; the inhibition of tyrosinase and collagenase; the blocking of advanced glycation end product (AGE) formation; along with assays in human skin fibroblast cultures, i.e., reactive oxygen species suppression, glutathione stimulation, and protection from oxidative stress and from ultraviolet (UVB) radiation, were also used. Extracts from both cultivars were found to possess antioxidant capacity, tyrosinase- and collagenase-inhibitory activities, an ability to block glucose-induced AGEs, and in certain cases, UVB absorbance and photoprotective activities. Seed extracts were in general more active, while the use of 30% aqueous methanol seemed to be more efficient than n-hexane for extraction. Serial partition of the most active extracts resulted in fractions with enriched biological activities. These properties make Cretan carob extracts and their fractions suitable candidates for use in cosmetics.
Collapse
Affiliation(s)
- Dafni-Alexandra Kavvoura
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR “Demokritos”, 15341 Athens, Greece; (D.-A.K.); (D.K.)
| | - Michalis K. Stefanakis
- Laboratory of Organic Chemistry, Department of Chemistry, University of Crete, 70013 Heraklion, Greece; (M.K.S.); (H.E.K.)
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR “Demokritos”, 15341 Athens, Greece; (D.-A.K.); (D.K.)
| | - Haralambos E. Katerinopoulos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Crete, 70013 Heraklion, Greece; (M.K.S.); (H.E.K.)
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR “Demokritos”, 15341 Athens, Greece; (D.-A.K.); (D.K.)
| |
Collapse
|
9
|
Ishkaeva RA, Khaertdinov NN, Yakovlev AV, Esmeteva MV, Salakhieva DV, Nizamov IS, Sitdikova GF, Abdullin TI. Characterization of Glutathione Dithiophosphates as Long-Acting H 2S Donors. Int J Mol Sci 2023; 24:11063. [PMID: 37446245 DOI: 10.3390/ijms241311063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Considering the important cytoprotective and signaling roles but relatively narrow therapeutic index of hydrogen sulfide (H2S), advanced H2S donors are required to achieve a therapeutic effect. In this study, we proposed glutathione dithiophosphates as new combination donors of H2S and glutathione. The kinetics of H2S formation in dithiophosphate solutions suggested a continuous H2S release by the donors, which was higher for the dithiophosphate of reduced glutathione than oxidized glutathione. The compounds, unlike NaHS, inhibited the proliferation of C2C12 myoblasts at submillimolar concentrations due to an efficient increase in intracellular H2S. The H2S donors more profoundly affected reactive oxygen species and reduced glutathione levels in C2C12 myocytes, in which these parameters were elevated compared to myoblasts. Oxidized glutathione dithiophosphate as well as control donors exerted antioxidant action toward myocytes, whereas the effect of reduced glutathione dithiophosphate at (sub-)micromolar concentrations was rather modulating. This dithiophosphate showed an enhanced negative inotropic effect mediated by H2S upon contraction of the atrial myocardium, furthermore, its activity was prolonged and reluctant for washing. These findings identify glutathione dithiophosphates as redox-modulating H2S donors with long-acting profile, which are of interest for further pharmacological investigation.
Collapse
Affiliation(s)
- Rezeda A Ishkaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Nail N Khaertdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Aleksey V Yakovlev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marina V Esmeteva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Ilyas S Nizamov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Guzel F Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
10
|
Dayob K, Zengin A, Garifullin R, Guler MO, Abdullin TI, Yergeshov A, Salakhieva DV, Cong HH, Zoughaib M. Metal-Chelating Self-Assembling Peptide Nanofiber Scaffolds for Modulation of Neuronal Cell Behavior. MICROMACHINES 2023; 14:883. [PMID: 37421116 DOI: 10.3390/mi14040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
Synthetic peptides are promising structural and functional components of bioactive and tissue-engineering scaffolds. Here, we demonstrate the design of self-assembling nanofiber scaffolds based on peptide amphiphile (PA) molecules containing multi-functional histidine residues with trace metal (TM) coordination ability. The self-assembly of PAs and characteristics of PA nanofiber scaffolds along with their interaction with Zn, Cu, and Mn essential microelements were studied. The effects of TM-activated PA scaffolds on mammalian cell behavior, reactive oxygen species (ROS), and glutathione levels were shown. The study reveals the ability of these scaffolds to modulate adhesion, proliferation, and morphological differentiation of neuronal PC-12 cells, suggesting a particular role of Mn(II) in cell-matrix interaction and neuritogenesis. The results provide a proof-of-concept for the development of histidine-functionalized peptide nanofiber scaffolds activated with ROS- and cell-modulating TMs to induce regenerative responses.
Collapse
Affiliation(s)
- Kenana Dayob
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Aygul Zengin
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Department of Aeronautical Engineering, University of Turkish Aeronautical Association, Türkkuşu Kampüsü, Ankara 06790, Turkey
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Abdulla Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Hong Hanh Cong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Hanoi 100000, Vietnam
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
11
|
Ebihara K, Niwa R. Compounds Inhibiting Noppera-bo, a Glutathione S-transferase Involved in Insect Ecdysteroid Biosynthesis: Novel Insect Growth Regulators. Biomolecules 2023; 13:biom13030461. [PMID: 36979396 PMCID: PMC10046418 DOI: 10.3390/biom13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. We have addressed this issue by identifying and characterizing several chemical compounds that inhibit Nobo protein in both D. melanogaster and the yellow fever mosquito, Aedes aegypti. In this review, we summarize our findings from the search for Nobo inhibitors.
Collapse
Affiliation(s)
- Kana Ebihara
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Ibaraki, Japan
- Correspondence:
| |
Collapse
|
12
|
Ishkaeva RA, Salakhieva DV, Garifullin R, Alshadidi R, Laikov AV, Yergeshov AA, Kamalov MI, Abdullin TI. A new triphenylphosphonium-conjugated amphipathic cationic peptide with improved cell-penetrating and ROS-targeting properties. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100148. [PMID: 36593927 PMCID: PMC9804109 DOI: 10.1016/j.crphar.2022.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We study for the first time whether triphenylphosphonium (TPP) moiety can improve cellular delivery and redox properties of amphipathic cationic peptides based on YRFK/YrFK cell-penetrating and cytoprotective motif. TPP moiety was found to increase reducing activity of both stereoisomeric peptides in solution and on electrode surface in association with TPP-mediated intramolecular interactions. Among TPP-conjugated peptides, newly synthesized TPP3-YrFK featured both increased antioxidant efficacy and proteolytic resistance. TPP-conjugated peptides preferably mitigated endogenic ROS in mitochondria and cytoplasm of model glioblastoma cells with increased oxidative status. This anti-ROS effect was accompanied by mild reversible decrease of reduced glutathione level in the cells with relatively weak change in glutathione redox forms ratio. Such low interference with cell redox status is in accordance with non-cytotoxic nature of the compounds. Intracellular concentrations of label-free peptides were analyzed by LC-MS/MS, which showed substantial TPP-promoted penetration of YrFK motif across cell plasma membrane. However, according to ΔΨm analysis, TPP moiety did not profoundly enhance peptide interaction with mitochondrial inner membrane. Our study clarifies the role of TPP moiety in cellular delivery of amphipathic cationic oligopeptides. The results suggest TPP moiety as a multi-functional modifier for the oligopeptides which is capable of improving cellular pharmacokinetics and antioxidant activity as well as targeting increased ROS levels. The results encourage further investigation of TPP3-YrFK as a peptide antioxidant with multiple benefits.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
- Amphipathic cationic peptides
- CCCP, carbonyl cyanide 3-chlorophenylhydrazone
- CD, circular dichroism
- Cellular pharmacokinetics
- DCFDA, 2′,7′-dichlorofluorescin diacetate
- GSH, reduced glutathione
- HBSS, Hank's balanced salt solution
- Intramolecular interaction
- LC–MS/MS, liquid chromatography tandem mass-spectrometry
- MCB, monochlorobimane
- MRM, multiple reaction monitoring
- ROS targeting
- ROS, reactive oxygen species
- Redox activity
- SPPS, solid-phase peptide synthesis
- TPP, triphenylphosphonium
- Triphenylphosphonium cation
- aa, amino acid
Collapse
Affiliation(s)
- Rezeda A. Ishkaeva
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Diana V. Salakhieva
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Ruslan Garifullin
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia,Department of Aeronautical Engineering, University of Turkish Aeronautical Association, Türkkuşu Kampüsü, 06790, Ankara, Turkey
| | - Raghad Alshadidi
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Alexander V. Laikov
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Abdulla A. Yergeshov
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Marat I. Kamalov
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Timur I. Abdullin
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia,Corresponding author. Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia.
| |
Collapse
|