1
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2024; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
Li Z, Qiu X, Guan G, Shi K, Chen S, Tang J, Xiao M, Tang S, Yan Y, Zhou J, Xie H. The role of FGF-21 in promoting diabetic wound healing by modulating high glucose-induced inflammation. Heliyon 2024; 10:e30022. [PMID: 38726159 PMCID: PMC11078883 DOI: 10.1016/j.heliyon.2024.e30022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Wound healing is a complex biological process that can be impaired in individuals with diabetes. Diabetic wounds are a serious complication of diabetes that require promoting diagnosis and effective treatment. FGF-21, a member of the endocrine FGF factors family, has caught the spotlight in the treatment of diabetes for its beneficial effects on accelerating human glucose uptake and fat catabolism. However, the therapeutic efficacy of FGF-21 in promoting diabetic wounds remains unknown. This study aims to evaluate the therapeutic potential of FGF-21 in promoting diabetic wound healing. Methods we investigated the effects of FGF-21 on wound healing related-cells under high-glucose conditions using various assays such as CCK8, scratch assay, flow cytometry analysis, endothelial tube-formation assay, and transmission electron microscopy. Furthermore, we used db/db mice to verify the healing-promoting therapeutic effects of FGF-21 on diabetic wounds. We also conducted qRT-PCR, Western blot, and immunofluorescence staining analyses to elucidate the underlying mechanism. Result Our results indicate that FGF-21 treatment restored hyperglycemic damage on endothelial cell proliferation, migration, and tube-forming ability. It also reduced endothelial cell death rates under high-glucose conditions. TEM analysis showed that FGF-21 treatment effectively restored mitochondrial damage and morphological changes in endothelial cells caused by glucose. Additionally, qRT-PCR and Western blot analysis indicated that FGF-21 treatment restored inflammatory responses caused by hyperglycemic damage. Animal experiments confirmed these findings, suggesting that FGF-21 may be a promising candidate for the treatment of non-healing diabetic wounds due to its effectiveness in stimulating angiogenesis and anti-inflammatory function. Conclusion Our study provides evidence that FGF-21 is an essential regulator of wound-related cells under high-glucose conditions and has the potential to be a novel therapeutic target for accelerating diabetic wound healing.
Collapse
Affiliation(s)
- Zheling Li
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Xiaohui Qiu
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Gaopeng Guan
- Department of Endocrinology, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Ke Shi
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Shuyue Chen
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Jiangjie Tang
- Department of Stomatology, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Muzhang Xiao
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Changsha, Hunan, People's Republic of China
| | - Shijie Tang
- Department of Plastic and Cosmetic Surgery, Second Affiliated Hospital of Shantou University Medical Collage, Shantou City, People's Republic of China
| | - Yu Yan
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
- Department of Endocrinology, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| | - Huiqing Xie
- Department of Rehabilitation Medicine, Xiangya III Hospital of Central South University, Changsha City, People's Republic of China
| |
Collapse
|
3
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
4
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
6
|
Dawson LW, Cronin NM, DeMali KA. Mechanotransduction: Forcing a change in metabolism. Curr Opin Cell Biol 2023; 84:102219. [PMID: 37651955 PMCID: PMC10523412 DOI: 10.1016/j.ceb.2023.102219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Epithelial and endothelial cells experience numerous mechanical cues throughout their lifetimes. Cells resist these forces by fortifying their cytoskeletal networks and adhesions. This reinforcement is energetically costly. Here we describe how these energetic demands are met. We focus on the response of epithelial and endothelial cells to mechanical cues, describe the energetic needs of epithelia and endothelia, and identify the mechanisms these cells employ to increase glycolysis, oxidative phosphorylation, and fatty acid metabolism. We discuss the similarities and differences in the responses of the two cell types.
Collapse
Affiliation(s)
- Logan W Dawson
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas M Cronin
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Morciano G, Boncompagni C, Ramaccini D, Pedriali G, Bouhamida E, Tremoli E, Giorgi C, Pinton P. Comprehensive Analysis of Mitochondrial Dynamics Alterations in Heart Diseases. Int J Mol Sci 2023; 24:ijms24043414. [PMID: 36834825 PMCID: PMC9961104 DOI: 10.3390/ijms24043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The most common alterations affecting mitochondria, and associated with cardiac pathological conditions, implicate a long list of defects. They include impairments of the mitochondrial electron transport chain activity, which is a crucial element for energy formation, and that determines the depletion of ATP generation and supply to metabolic switches, enhanced ROS generation, inflammation, as well as the dysregulation of the intracellular calcium homeostasis. All these signatures significantly concur in the impairment of cardiac electrical characteristics, loss of myocyte contractility and cardiomyocyte damage found in cardiac diseases. Mitochondrial dynamics, one of the quality control mechanisms at the basis of mitochondrial fitness, also result in being dysregulated, but the use of this knowledge for translational and therapeutic purposes is still in its infancy. In this review we tried to understand why this is, by summarizing methods, current opinions and molecular details underlying mitochondrial dynamics in cardiac diseases.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| | | | | | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Esmaa Bouhamida
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| |
Collapse
|
8
|
Mitochondrial Dysfunction: The Hidden Player in the Pathogenesis of Atherosclerosis? Int J Mol Sci 2023; 24:ijms24021086. [PMID: 36674602 PMCID: PMC9861427 DOI: 10.3390/ijms24021086] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a multifactorial inflammatory pathology that involves metabolic processes. Improvements in therapy have drastically reduced the prognosis of cardiovascular disease. Nevertheless, a significant residual risk is still relevant, and is related to unmet therapeutic targets. Endothelial dysfunction and lipid infiltration are the primary causes of atherosclerotic plaque progression. In this contest, mitochondrial dysfunction can affect arterial wall cells, in particular macrophages, smooth muscle cells, lymphocytes, and endothelial cells, causing an increase in reactive oxygen species (ROS), leading to oxidative stress, chronic inflammation, and intracellular lipid deposition. The detection and characterization of mitochondrial DNA (mtDNA) is crucial for assessing mitochondrial defects and should be considered the goal for new future therapeutic interventions. In this review, we will focus on a new idea, based on the analysis of data from many research groups, namely the link between mitochondrial impairment and endothelial dysfunction and, in particular, its effect on atherosclerosis and aging. Therefore, we discuss known and novel mitochondria-targeting therapies in the contest of atherosclerosis.
Collapse
|
9
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| |
Collapse
|
10
|
Henrion D. [Piezo1 is a mechanosensitive ion channel in the brain capillary vessels]. Med Sci (Paris) 2022; 38:1065-1068. [PMID: 36692267 DOI: 10.1051/medsci/2022156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Daniel Henrion
- Université d'Angers, laboratoire MITOVASC (équipe CarMe), Inserm U1083, CNRS UMR 6015, Angers, France
| |
Collapse
|
11
|
Tracy EP, Nair R, Rowe G, Beare JE, Beyer A, LeBlanc AJ. Adipose stromal vascular fraction reverses mitochondrial dysfunction and hyperfission in aging-induced coronary microvascular disease. Am J Physiol Heart Circ Physiol 2022; 323:H749-H762. [PMID: 36018760 PMCID: PMC9529257 DOI: 10.1152/ajpheart.00311.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Aging is associated with blunted coronary microvascular vasodilatory function. Previously, systemically administered adipose stromal vascular fraction (SVF) therapy reversed aging-induced attenuation of β1-adrenergic- and flow-mediated dilation dependent on reducing mitochondrial reactive oxygen species. We hypothesized that SVF-mediated recovery of microvascular dilatory function is dependent on recovery of mitochondrial function, specifically by reducing mitochondrial hyperfission. Female Fischer-344 rats were allocated into young control, old control, and old + SVF therapy groups. Pressure myography, immunofluorescent staining, Western blot analysis, and RNA sequencing were performed to determine coronary microvascular mitochondrial dynamics and function. Gene and protein expression of fission-mediator DRP-1 was enhanced with aging but reversed by SVF therapy. SVF facilitated an increase in fusion-mediator MFN-1 gene and protein expression. Mitochondrial morphology was characterized as rod-like and densely networked in young controls, isolated circular and punctate with aging, and less circularity with partially restored mitochondrial branch density with SVF therapy. Decreased mitochondrial membrane potential and ATP bioavailability in aged animals at baseline and during flow-mediated dilation were reversed by SVF and accompanied with enhanced oxygen consumption. Dilation to norepinephrine and flow in young controls were dependent on uninhibited mitochondrial fusion, whereas inhibiting fission did not restore aged microvessel response to norepinephrine or flow. SVF-mediated recovery of β-adrenergic function was dependent on uninhibited mitochondrial fusion, whereas recovery of flow-mediated dilation was dependent on maintained mitochondrial fission. Impaired dilation in aging is mitigated by SVF therapy, which recovers mitochondrial function and fission/fusion balance.NEW & NOTEWORTHY We elucidated the consequences of aging on coronary microvascular mitochondrial health as well as SVF's ability to reverse these effects. Aging shifts gene/protein expression and mitochondrial morphology indicating hyperfission, alongside attenuated mitochondrial membrane potential and ATP bioavailability, all reversed using SVF therapy. Mitochondrial membrane potential and ATP levels correlated with vasodilatory efficiency. Mitochondrial dysfunction is a contributing pathological factor in aging that can be targeted by therapeutic SVF to preserve microvascular dilative function.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Rajeev Nair
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Jason E Beare
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Andreas Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|