1
|
Mostafa EMA, Atta R, Maher SA, El-Kherbetawy MK, Ameen AM. Quercetin and its potential therapeutic effects on aluminum phosphide-induced cardiotoxicity in rats: Role of NOX4, FOXO1, ERK1/2, and NF-κB. Tissue Cell 2024; 91:102622. [PMID: 39549503 DOI: 10.1016/j.tice.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Acute Aluminum phosphide (AlP) poisoning poses a serious global issue, yet the exact mechanisms behind AlP-induced cardiotoxicity are still not well understood. Moreover, there is no specific antidote available for AlP toxicity. Nevertheless, Quercetin (QE) has emerged as a promising therapeutic candidate in various contexts. Accordingly, our study aimed to evaluate the QE potential therapeutic effects against AlP-induced cardiotoxicity and the mechanisms underlying such effects. Rats were assigned into four groups: Group I (control group), Group II (vehicle (corn oil) group), Group III (AlP group) received a single dose of AlP (10 mg/kg body weight) dissolved in corn oil by oral gavage, and Group IV (AlP + QE group) received a single dose of QE (400 mg/kg body weight) dissolved in saline, one hour after AlP administration. AlP-induced cardiotoxicity was evidenced by the increase in cardiac troponin I (cTnI) as well as the hemodynamic, ECG, and histopathological abnormalities. The AlP group denoted a decrease of the antioxidant enzymes; catalase and SOD and an increase of the lipid peroxidation marker; MDA. This was associated with a notable increase in inflammatory cytokines (TNFα, IL-6, and IL1β), in addition to a significant upregulation of the expression of NOX4, FOXO1, ERK1/2, and NF-κB. Moreover, Caspase3, and BAX showed strong immunopositive expression, while Bcl-2 showed mild immunoexpression. On the other hand, treatment with QE showed an improvement in the cardiotoxic effects of AlP, as indicated by significant enhancements in biomarkers, functional assessments, and histopathological findings. These results suggest that QE may be a promising candidate for treating AlP-induced cardiotoxicity, attributed to its antioxidant, anti-inflammatory, and anti-apoptotic properties, particularly emphasizing the roles of NOX4, FOXO1, ERK1/2, and NF-κB.
Collapse
Affiliation(s)
- Enas M A Mostafa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha Atta
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Angie M Ameen
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Sitarek P, Merecz-Sadowska A, Sikora J, Osicka W, Śpiewak I, Picot L, Kowalczyk T. Exploring the Therapeutic Potential of Theobroma cacao L.: Insights from In Vitro, In Vivo, and Nanoparticle Studies on Anti-Inflammatory and Anticancer Effects. Antioxidants (Basel) 2024; 13:1376. [PMID: 39594518 PMCID: PMC11590920 DOI: 10.3390/antiox13111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Theobroma cacao L., commonly known as cocoa, has been an integral part of human culture and diet for thousands of years. However, recent scientific research has highlighted its potential therapeutic properties, particularly in the treatment of cancer and inflammatory diseases. This comprehensive review analyzes the anti-inflammatory and anticancer effects of Theobroma cacao extracts combined with nanoparticles using in vitro and in vivo studies. Its diverse biological activity can be attributed to its rich phytochemical profile, including polyphenols, flavonoids, and alkaloids. In vitro studies have found that cocoa extracts, alone or in combination with nanoparticles, inhibit cancer cell proliferation, induce apoptosis and modulate key signaling pathways in various cancer cell lines. The extracts have also been found to reduce tumor growth and enhance the efficacy of conventional chemotherapeutic agents, potentially reducing their side effects, in vivo. Its anti-inflammatory properties are based on its ability to modulate inflammatory mediators, inhibit NF-κB signaling, and regulate macrophage polarization. These effects have been observed in both cellular and animal models of inflammation. This review opens up new possibilities for future research and therapeutic applications, highlighting the potential of Theobroma cacao as a valuable complementary approach in the treatment and prevention of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Weronika Osicka
- Students Research Group, Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Igor Śpiewak
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France;
| | - Tomasz Kowalczyk
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
3
|
Dai J, Chen R, Wang J, Zhou P, Wang B, Li J, Lu Y, Pang X, Fu S. Intraperitoneal administration of doxorubicin-encapsulated Brucea javanica oil nanoemulsion against malignant ascites. Eur J Pharm Biopharm 2024; 202:114422. [PMID: 39033885 DOI: 10.1016/j.ejpb.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Malignant ascites is a common complication of advanced cancers, which reduces survival rates and diminishes patients' quality of life. Intraperitoneal chemotherapy is a conventional method for treating cancer-related ascites, but the poor drug retention of conventional drugs requires frequent administration to maintain sustained anti-tumor effects. In this study, we encapsulated doxorubicin (DOX) into Brucea javanica oil (BJO) to develop a water-in-oil (W/O) nanoemulsion called BJO@DOX for the treatment of malignant ascites through in-situ intraperitoneal administration. BJO significantly induced apoptosis of S180 cells by upregulating the expression of p53 and caspase-3 (cleaved). Additionally, BJO notably downregulated the expression of Bcl-2, further promoting apoptosis of S180 cells. Cell apoptosis significantly inhibited ascites formation and tumor cell proliferation in a mouse model. The combination of DOX and BJO exhibited satisfactory synergistic effects, consequently prolonging the survival period of mice. Histological examination of major organs indicated that the nanoemulsion had excellent biosafety in vivo. The BJO@DOX nanoemulsion represents a promising platform for in-situ chemotherapy of malignant ascites.
Collapse
Affiliation(s)
- Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Renjin Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jie Wang
- Department of Pediatrics, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Zhou
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Biqiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianmei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianlun Pang
- Health Management Center, the Affiliated TCM Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Hakeem AN, El-Kersh DM, Hammam O, Elhosseiny A, Zaki A, Kamel K, Yasser L, Barsom M, Ahmed M, Gamal M, Attia YM. Piperine enhances doxorubicin sensitivity in triple-negative breast cancer by targeting the PI3K/Akt/mTOR pathway and cancer stem cells. Sci Rep 2024; 14:18181. [PMID: 39107323 PMCID: PMC11303729 DOI: 10.1038/s41598-024-65508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks an actionable target with limited treatment options beyond conventional chemotherapy. Therapeutic failure is often encountered due to inherent or acquired resistance to chemotherapy. Previous studies implicated PI3K/Akt/mTOR signaling pathway in cancer stem cells (CSCs) enrichment and hence chemoresistance. The present study aimed at investigating the potential effect of piperine (PIP), an amide alkaloid isolated from Piper nigrum, on enhancing the sensitivity of TNBC cells to doxorubicin (DOX) in vitro on MDA-MB-231 cell line and in vivo in an animal model of Ehrlich ascites carcinoma solid tumor. Results showed a synergistic interaction between DOX and PIP on MDA-MB-231 cells. In addition, the combination elicited enhanced suppression of PI3K/Akt/mTOR signaling that paralleled an upregulation in this pathway's negative regulator, PTEN, along with a curtailment in the levels of the CSCs surrogate marker, aldehyde dehydrogenase-1 (ALDH-1). Meanwhile, in vivo investigations demonstrated the potential of the combination regimen to enhance necrosis while downregulating PTEN and curbing PI3K levels as well as p-Akt, mTOR, and ALDH-1 immunoreactivities. Notably, the combination failed to change cleaved poly-ADP ribose polymerase levels suggesting a pro-necrotic rather than pro-apoptotic mechanism. Overall, these findings suggest a potential role of PIP in decreasing the resistance to DOX in vitro and in vivo, likely by interfering with the PI3K/Akt/mTOR pathway and CSCs.
Collapse
Affiliation(s)
- Andrew N Hakeem
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dina M El-Kersh
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Aliaa Elhosseiny
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Amr Zaki
- Graduate Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Kohinour Kamel
- Graduate Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Lidia Yasser
- Graduate Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marina Barsom
- Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menatallah Ahmed
- Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Gamal
- Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| |
Collapse
|
5
|
Szponar J, Niziński P, Dudka J, Kasprzak-Drozd K, Oniszczuk A. Natural Products for Preventing and Managing Anthracycline-Induced Cardiotoxicity: A Comprehensive Review. Cells 2024; 13:1151. [PMID: 38995002 PMCID: PMC11240786 DOI: 10.3390/cells13131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Doxorubicin (DOX) is an anthracycline anticancer agent that is highly effective in the treatment of solid tumors. Given the multiplicity of mechanisms involved in doxorubicin-induced cardiotoxicity, it is difficult to identify a precise molecular target for toxicity. The findings of a literature review suggest that natural products may offer cardioprotective benefits against doxorubicin-induced cardiotoxicity, both in vitro and in vivo. However, further confirmatory studies are required to substantiate this claim. It is of the utmost importance to direct greater attention towards the intricate signaling networks that are of paramount importance for the survival and dysfunction of cardiomyocytes. Notwithstanding encouraging progress made in preclinical studies of natural products for the prevention of DOX-induced cardiotoxicity, these have not yet been translated for clinical use. One of the most significant obstacles hindering the development of cardioprotective adjuvants based on natural products is the lack of adequate bioavailability in humans. This review presents an overview of current knowledge on doxorubicin DOX-induced cardiotoxicity, with a focus on the potential benefits of natural compounds and herbal preparations in preventing this adverse effect. As literature search engines, the browsers in the Scopus, PubMed, Web of Science databases and the ClinicalTrials.gov register were used.
Collapse
Affiliation(s)
- Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital, Medical University of Lublin, 20-718 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland;
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
6
|
Abd El-Kaream SA, Hussein NGA, El-Kholey SM, Elhelbawy AMAEI. Microneedle combined with iontophoresis and electroporation for assisted transdermal delivery of goniothalamus macrophyllus for enhancement sonophotodynamic activated cancer therapy. Sci Rep 2024; 14:7962. [PMID: 38575628 PMCID: PMC10994924 DOI: 10.1038/s41598-024-58033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.
Collapse
Affiliation(s)
- Samir Ali Abd El-Kaream
- Applied Medical Chemistry Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Nabila Gaber Ali Hussein
- Applied Medical Chemistry Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sohier Mahmoud El-Kholey
- Medical Biophysics Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
7
|
Silva LNR, Oliveira ECP, Baratto LC. Amazonian useful plants described in the book "Le Pays des Amazones" (1885) of the Brazilian propagandist Baron de Santa-Anna Nery: a historical and ethnobotanical perspective. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:26. [PMID: 38409064 PMCID: PMC10897987 DOI: 10.1186/s13002-024-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Frederico José de Santa-Anna Nery (1848-1901) was a Brazilian Baron who referred to himself as a "volunteer propagandist" for Brazil in Europe, serving as an immigration agent to publicize the living conditions in the Amazon region, advocating for its development and modernization at the end of the nineteenth century. Santa-Anna Nery's most famous book is "Le Pays des Amazones" (The Lands of the Amazons), first published in 1885, which the author dedicated a chapter to introduce and report on the Amazonian useful plant species and its relationship with humans. The aim of this work is to understand the historical context and ethnobotanical value of the plant species in the Brazilian Amazon at the end of the nineteenth century through an analysis of the book "Le Pays des Amazones" (1885) by Baron de Santa-Anna Nery, as well as to bring to light the historical importance of this very influential propagandist, who has been forgotten nowadays. METHODS The original book "Le Pays des Amazones" (1885), as well as the original 3rd edition and its translated version into Portuguese, was carefully analyzed and all information about plants was systematized, with botanical names being updated. Finally, using the scientific name of medicinal plants alone or in combination with their traditional use, a search was carried out in databases in order to indicate current pharmacological studies that provide evidence about the described traditional uses. RESULTS A total of 156 plant species were identified in the book, although 132 species had their scientific names updated. These species belong to 45 different families, with Fabaceae and Arecaceae the most represented, and 109 plants are Brazilian native. Considering only the 36 medicinal plants, the main medicinal indications reported were astringent, purgative/laxative, stimulant and tonic, vermifuge, febrifuge, sudorific, emetic, diuretic and antidysenteric. Regarding other useful plants (non-medicinal), 97 species were cited for food, constructions and buildings, spices and condiments, ornaments and objects, carpentry, textile fibers, gums, oils, balms and essences, pigments and tanning, hunting and fishing. CONCLUSIONS When the book "Le Pays des Amazones" is analyzed from a timeless perspective, with a particular focus on historical ethnobotany, it is possible to observe the economic, social, and political importance of many useful plants for the Amazon at the end of the nineteenth century and how the relationship between local people, indigenous communities, and immigrants was established with plant biodiversity.
Collapse
Affiliation(s)
- Lucas N R Silva
- Laboratory of Medicinal Plant Biotechnology, Post-Graduate Program in Biosciences, Universidade Federal do Oeste do Pará (UFOPA), Santarém, Pará (PA), Brazil
| | - Elaine C P Oliveira
- Laboratory of Medicinal Plant Biotechnology, Post-Graduate Program in Biosciences, Universidade Federal do Oeste do Pará (UFOPA), Santarém, Pará (PA), Brazil
| | - Leopoldo C Baratto
- Laboratory of Applied Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
8
|
Mansour A, Fytory M, Ahmed OM, Rahman FEZSA, El-Sherbiny IM. In-vitro and in-vivo assessment of pH-responsive core-shell nanocarrier system for sequential delivery of methotrexate and 5-fluorouracil for the treatment of breast cancer. Int J Pharm 2023; 648:123608. [PMID: 37972670 DOI: 10.1016/j.ijpharm.2023.123608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) is one of the leading fatal diseases affecting females worldwide. Despite the presence of tremendous chemotherapeutic agents, the resistance emergence directs the recent research towards synergistic drugs' combination along with encapsulation inside biocompatible smart nanocarriers. Methotrexate (MTX) and 5-fluorouracil (Fu) are effective against BC and have sequential synergistic activity. In this study, a core-shell nanocarrier composed of mesoporous silica nanoparticles (MSN) as the core and zeolitic imidazolate framework-8 nano metal organic frameworks (ZIF-8 NMOF) as the shell was developed and loaded with Fu and MTX, respectively. The developed nanostructure; Fu-MSN@MTX-NMOF was validated by several characterization techniques and conferred high drugs' entrapment efficiency (EE%). In-vitro assessment revealed a pH-responsive drug release pattern in the acidic pH where MTX was released followed by Fu. The cytotoxicity evaluation indicated enhanced anticancer effect of the Fu-MSN@MTX-NMOF relative to the free drugs in addition to time-dependent fortified cytotoxic effect due to the sequential drugs' release. The in-vivo anticancer efficiency was examined using Ehrlich ascites carcinoma (EAC) animal model where the anticancer effect of the developed Fu-MSN@MTX-NMOF was compared to the sequentially administrated free drugs. The results revealed enhanced anti-tumor effect while maintaining the normal functions of the vital organs as the heart, kidney and liver.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6(th) October City, 12578, Giza, Egypt
| | - Mostafa Fytory
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6(th) October City, 12578, Giza, Egypt; Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511, Beni-suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | | | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6(th) October City, 12578, Giza, Egypt.
| |
Collapse
|
9
|
Hanan E, Hasan N, Zahiruddin S, Ahmad S, Sharma V, Ahmad FJ. Utilization of Quince (Cydonia oblonga) Peel and Exploration of Its Metabolite Profiling and Cardioprotective Potential Against Doxorubicin-Induced Cardiotoxicity in Wistar Rats. ACS OMEGA 2023; 8:40036-40050. [PMID: 37929101 PMCID: PMC10620784 DOI: 10.1021/acsomega.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 11/07/2023]
Abstract
Quince (Cydonia oblonga Mill.) is a pomaceous fruit that is typically processed into jams, jellies, and marmalade. The byproduct, i.e., the quince peel emanated from the processing industry, can be upcycled, ensuring zero waste policy and resulting in a sustainable food system. In our study, the quince peel was explored for in vitro phytochemical analysis and in vivo cardioprotective potential. Two diverse extractions (ultrasonication and reflux) and four different solvents (aqueous, ethanolic, hydroethanolic, and methanolic) were used for the extraction of quince peel and assessed for the phytochemical and antioxidant study. Among all the evaluated extracts, hydroethanolic quince extract extracted through the reflux extraction method showed the maximum phenolic (27.23 ± 0.85 mg GAE/g DW) and flavonoid (16.5 ± 1.02 mg RE/g DW) content. The maximum antioxidant potential (DPPH) with an IC50 value of 204.8 ± 2.24 μg/mL was noted for the hydroethanolic extract. This best active extract was then subjected to HPTLC, UPLC-MS, mineral, and FTIR analysis to study the metabolic profiling and inorganic composition and to confirm the presence of bioactives. Additionally, the in vivo study was done in rats using doxorubicin (DOX)-induced cardiotoxicity. The rats were given extracts orally at 160 and 320 mg/kg bw for 30 days. ECG analysis was done at the termination of the experiment. Besides this, the lipid profile, blood serum parameters (CK-MB, LDH, AST), and tissue parameters (MDA, SOD, GSH, CAT) were analyzed. The DOX-treated group unveiled a substantial variance (p < 0.001) in all the parameters in contrast to the normal control group and extract control groups. However, the pretreated groups substantially alleviated the DOX-induced changes in all the parameters. Additionally, recuperation in histopathological alterations of the cardiac tissue in contrast to the DOX-induced toxicity was also seen in the pretreated groups. Thus, it could be said that the cardioprotective activity of the quince peel extract attributed to the presence of phytoconstituents counteracted the DOX-induced cardiotoxicity and assisted in the restoration of the cardiac injury in rats.
Collapse
Affiliation(s)
- Entesar Hanan
- Department
of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sultan Zahiruddin
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
& Research, Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
& Research, Jamia Hamdard, New Delhi 110062, India
| | - Vasudha Sharma
- Department
of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Farhan J Ahmad
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
10
|
Patil PP, Kumar P, Khanal P, Patil VS, Darasaguppe HR, Bhandare VV, Bhatkande A, Shukla S, Joshi RK, Patil BM, Roy S. Computational and experimental pharmacology to decode the efficacy of Theobroma cacao L. against doxorubicin-induced organ toxicity in EAC-mediated solid tumor-induced mice. Front Pharmacol 2023; 14:1174867. [PMID: 37324470 PMCID: PMC10264642 DOI: 10.3389/fphar.2023.1174867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objective: Doxorubicin is extensively utilized chemotherapeutic drug, and it causes damage to the heart, liver, and kidneys through oxidative stress. Theobroma cacao L (cocoa) is reported to possess protective effects against several chemical-induced organ damages and also acts as an anticancer agent. The study aimed to determine whether the administration of cocoa bean extract reduces doxorubicin-induced organ damage in mice with Ehrlich ascites carcinoma (EAC) without compromising doxorubicin efficacy. Methodology: Multiple in vitro methods such as cell proliferation, colony formation, chemo-sensitivity, and scratch assay were carried out on cancer as well as normal cell lines to document the effect of cocoa extract (COE) on cellular physiology, followed by in vivo mouse survival analysis, and the organ-protective effect of COE on DOX-treated animals with EAC-induced solid tumors was then investigated. In silico studies were conducted on cocoa compounds with lipoxygenase and xanthine oxidase to provide possible molecular explanations for the experimental observations. Results: In vitro studies revealed potent selective cytotoxicity of COE on cancer cells compared to normal. Interestingly, COE enhanced DOX potency when used in combination. The in vivo results revealed reduction in EAC and DOX-induced toxicities in mice treated with COE, which also improved the mouse survival time; percentage of lifespan; antioxidant defense system; renal, hepatic, and cardiac function biomarkers; and also oxidative stress markers. COE reduced DOX-induced histopathological alterations. Through molecular docking and MD simulations, we observed chlorogenic acid and 8'8 methylenebiscatechin, present in cocoa, to have the highest binding affinity with lipoxygenase and xanthine oxidase, which lends support to their potential in ameliorating oxidative stress. Conclusion: The COE reduced DOX-induced organ damage in the EAC-induced tumor model and exhibited powerful anticancer and antioxidant effects. Therefore, COE might be useful as an adjuvant nutritional supplement in cancer therapy.
Collapse
Affiliation(s)
- Priyanka P. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Vishal S. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Harish R. Darasaguppe
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Arati Bhatkande
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Rajesh K. Joshi
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Subarna Roy
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|