1
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2024. [DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Sridhar A, DeSantiago J, Chen H, Pavel MA, Ly O, Owais A, Barney M, Jousma J, Nukala SB, Abdelhady K, Massad M, Rizkallah LE, Ong SG, Rehman J, Darbar D. Modulation of NOX2 causes obesity-mediated atrial fibrillation. J Clin Invest 2024; 134:e175447. [PMID: 39146015 PMCID: PMC11405042 DOI: 10.1172/jci175447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jalees Rehman
- Division of Cardiology
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, Illinois, USA
| |
Collapse
|
3
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
4
|
Athanasiou A, Charalambous M, Anastasiou T, Aggeli K, Soteriades ES. Preoperative and postoperative administration of vitamin C in cardiac surgery patients - settings, dosages, duration, and clinical outcomes: a narrative review. Ann Med Surg (Lond) 2024; 86:3591-3607. [PMID: 38846824 PMCID: PMC11152825 DOI: 10.1097/ms9.0000000000002112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Vitamin C or ascorbic acid is a water-soluble vitamin capable of directly donating electrons to reactive oxygen species, attenuating electrical remodeling, and cardiac dysfunction in patients undergoing cardiac surgery (CS), considered one of the most effective defenses against free radicals in the blood, thus being one of the first antioxidants consumed during oxidative stress. The aim of this review is to assess the effects of perioperative administration of vitamin C in CS patients. A comprehensive literature search was conducted in order to identify prospective cohort studies and/or randomized controlled trials reporting on the perioperative effects of vitamin C among adult patients undergoing CS. Studies published between January 1980 to December 2022 were included in our search, resulting in a total of 31 articles that met all our inclusion criteria. There seems to be a beneficial effect of vitamin C supplementation in arrhythmias such as in postoperative atrial fibrillation, reduction of ICU length of stay, and hospital length of stay, reduction in postoperative ventilation time, in inotropic demand, and in postoperative fatigue. Vitamin C can act as a scavenger of free radicals to decrease the peroxidation of the lipids present in the cell membrane, and to protect the myocardium postoperatively from ischemia/reperfusion injury, thus attenuating oxidative stress and inflammation. It represents a readily available and cost-effective strategy that could improve the outcome of patients undergoing CS, by reducing the risk of serious cardiovascular adverse events, both perioperatively and postoperatively.
Collapse
Affiliation(s)
| | | | | | - Konstantina Aggeli
- Department of Cardiology, ‘Hippocrates’ General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia, Cyprus
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
7
|
Liu H, Nguyen HH, Hwang SY, Lee SS. Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. Int J Mol Sci 2023; 24:16805. [PMID: 38069125 PMCID: PMC10706054 DOI: 10.3390/ijms242316805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In patients with portal hypertension, there are many complications including cardiovascular abnormalities, hepatorenal syndrome, ascites, variceal bleeding, and hepatic encephalopathy. The underlying mechanisms are not yet completely clarified. It is well known that portal hypertension causes mesenteric congestion which produces reactive oxygen species (ROS). ROS has been associated with intestinal mucosal injury, increased intestinal permeability, enhanced gut bacterial overgrowth, and translocation; all these changes result in increased endotoxin and inflammation. Portal hypertension also results in the development of collateral circulation and reduces liver mass resulting in an overall increase in endotoxin/bacteria bypassing detoxication and immune clearance in the liver. Endotoxemia can in turn aggravate oxidative stress and inflammation, leading to a cycle of gut barrier dysfunction → endotoxemia → organ injury. The phenotype of cardiovascular abnormalities includes hyperdynamic circulation and cirrhotic cardiomyopathy. Oxidative stress is often accompanied by inflammation; thus, blocking oxidative stress can minimize the systemic inflammatory response and alleviate the severity of cardiovascular diseases. The present review aims to elucidate the role of oxidative stress in cirrhosis-associated cardiovascular abnormalities and discusses possible therapeutic effects of antioxidants on cardiovascular complications of cirrhosis including hyperdynamic circulation, cirrhotic cardiomyopathy, and hepatorenal syndrome.
Collapse
Affiliation(s)
| | | | | | - Samuel S. Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada (H.H.N.); (S.Y.H.)
| |
Collapse
|
8
|
Szyller J, Antoniak R, Wadowska K, Bil-Lula I, Hrymniak B, Banasiak W, Jagielski D. Redox imbalance in patients with heart failure and ICD/CRT-D intervention. Can it be an underappreciated and overlooked arrhythmogenic factor? A first preliminary clinical study. Front Physiol 2023; 14:1289587. [PMID: 38028798 PMCID: PMC10663344 DOI: 10.3389/fphys.2023.1289587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Redox imbalance and oxidative stress are involved in the pathogenesis of arrhythmias. They also play a significant role in pathogenesis of heart failure (HF). In patients with HFand implanted cardioverter-defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRT-D), the direct current shocks may be responsible for additional redox disturbances and additionally increase arrhythmia risk. However, the precise role of oxidative stress in potentially fatal arrhythmias and shock induction remains unclear. Methods: 36 patients with diagnosed HF and implanted ICD/CRT-D were included in this study. Patients were qualified to the study group in case of registered ventricular arrhythmia and adequate ICD/CRT-D intervention. The control group consisted of patients without arrhythmia with elective replacement indicator (ERI) status. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) in erythrocyte (RBC), SOD, GPx activity and reactive oxygen/nitrogen species (ROS/RNS) concentration in plasma were determined. The values were correlated with glucose, TSH, uric acid, Mg and ion concentrations. Results: In the perishock period, we found a significant decrease in RBC and extracellular (EC) SOD and RBC CAT activity (p = 0.0110, p = 0.0055 and p = 0.0002, respectively). EC GPx activity was also lower (p = 0.0313). In all patients, a decrease in the concentration of all forms of glutathione was observed compared to the ERI group. Important association between ROS/RNS and GSH, Mg, TSH and uric acid was shown. A relationship between the activity of GSH and antioxidant enzymes was found. Furthermore, an association between oxidative stress and ionic imbalance has also been demonstrated. The patients had an unchanged de Haan antioxidant ratio and glutathione redox potential. Conclusion: Here we show significant redox disturbances in patients with HF and ICD/CRT-D interventions. Oxidative stress may be an additional risk factor for the development of arrhythmia in patients with HF. The detailed role of oxidative stress in ventricular arrhythmias requires further research already undertaken by our team.
Collapse
Affiliation(s)
- Jakub Szyller
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Radosław Antoniak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Katarzyna Wadowska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bruno Hrymniak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Dariusz Jagielski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
9
|
Haugsten Hansen M, Sadredini M, Hasic A, Eriksen M, Stokke MK. Myocardial oxidative stress is increased in early reperfusion, but systemic antioxidative therapy does not prevent ischemia-reperfusion arrhythmias in pigs. Front Cardiovasc Med 2023; 10:1223496. [PMID: 37823177 PMCID: PMC10562584 DOI: 10.3389/fcvm.2023.1223496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Background Arrhythmias in the early phase of reperfusion after myocardial infarction (MI) are common, and can lead to hemodynamic instability or even cardiac arrest. Reactive oxygen species (ROS) are thought to play a key role in the underlying mechanisms, but evidence from large animal models is scarce, and effects of systemic antioxidative treatment remain contentious. Methods MI was induced in 7 male and 7 female pigs (Norwegian landrace, 35-40 kg) by clamping of the left anterior descending artery (LAD) during open thorax surgery. Ischemia was maintained for 90 min, before observation for 1 h after reperfusion. Pigs were randomized 1:1 in an operator-blinded fashion to receive either i.v. N-acetylcysteine (NAC) from 70 min of ischemia and onwards, or 0.9% NaCl as a control. Blood samples and tissue biopsies were collected at baseline, 60 min of ischemia, and 5 and 60 min of reperfusion. ECG and invasive blood pressure were monitored throughout. Results The protocol was completed in 11 pigs. Oxidative stress, as indicated by immunoblotting for Malondialdehyde in myocardial biopsies, was increased at 5 min of reperfusion compared to baseline, but not at 60 min of reperfusion, and not reduced with NAC. We found no significant differences in circulating biomarkers of myocardial necrosis, nor in the incidence of idioventricular rhythm (IVR), non-sustained ventricular tachycardia (NSVT), ventricular tachycardia (VT) or ventricular fibrillation (VF) between NAC-treated and control pigs during reperfusion. Conclusion Myocardial oxidation was increased early after reperfusion in a porcine model of MI, but systemic antioxidative treatment did not protect against reperfusion arrhythmias.
Collapse
Affiliation(s)
- Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Morten Eriksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
10
|
Jabeen K, Rehman K, Akash MSH, Nadeem A, Mir TM. Neuroprotective and Cardiometabolic Role of Vitamin E: Alleviating Neuroinflammation and Metabolic Disturbance Induced by AlCl 3 in Rat Models. Biomedicines 2023; 11:2453. [PMID: 37760893 PMCID: PMC10525157 DOI: 10.3390/biomedicines11092453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and neurodegenerative disorders, such as diabetes mellitus and Alzheimer's disease, share a common pathophysiological link involving insulin resistance (IR), inflammation, and hypertension. Aluminium chloride (AlCl3), a known neurotoxicant, has been associated with neurodegeneration, cognitive impairment, and various organ dysfunctions due to the production of reactive oxygen species (ROS) and oxidative stress. In this study, we aimed to investigate the potential protective effects of metformin and vitamin E against AlCl3-induced neuroinflammation and cardiometabolic disturbances in rat models. Rats were divided into five groups: a normal control group, an AlCl3-treated diseased group without any treatment, and three groups exposed to AlCl3 and subsequently administered with metformin (100 mg/kg/day) alone, vitamin E (150 mg/kg/day) orally alone, or a combination of metformin (100 mg/kg/day) and vitamin E (150 mg/kg/day) for 45 days. We analyzed serum biomarkers and histopathological changes in brain, heart, and pancreatic tissues using H&E and Masson's trichrome staining and immunohistochemistry (IHC). Electrocardiogram (ECG) patterns were observed for all groups. The AlCl3-treated group showed elevated levels of inflammatory biomarkers, MDA, and disturbances in glycemic and lipid profiles, along with reduced insulin levels. However, treatment with the combination of metformin and vitamin E resulted in significantly reduced glucose, cholesterol, LDL, and TG levels, accompanied by increased insulin and HDL levels compared to the individual treatment groups. Histopathological analyses revealed that combination therapy preserved neuronal structures, muscle cell nuclei, and normal morphology in the brain, heart, and pancreatic tissues. IHC demonstrated reduced amyloid plaques and neurofibrillary tangles in the combination-treated group compared to the AlCl3-treated group. Moreover, the combination group showed a normal ECG pattern, contrasting the altered pattern observed in the AlCl3-treated group. Overall, our findings suggest that metformin and vitamin E, in combination, possess neuroprotective and cardiometabolic effects, alleviating AlCl3-induced neuroinflammation and metabolic disturbances.
Collapse
Affiliation(s)
- Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38000, Pakistan
- Department of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 66000, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
11
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|
12
|
Cardiac Functional and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2023; 24:ijms24065552. [PMID: 36982627 PMCID: PMC10059787 DOI: 10.3390/ijms24065552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental disease that mostly affects girls, who are heterozygous for mutations in the X-linked CDKL5 gene. Mutations in the CDKL5 gene lead to a lack of CDKL5 protein expression or function and cause numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, gastrointestinal problems, and severe neurodevelopmental impairment. Mouse models of CDD recapitulate several aspects of CDD symptomology, including cognitive impairments, motor deficits, and autistic-like features, and have been useful to dissect the role of CDKL5 in brain development and function. However, our current knowledge of the function of CDKL5 in other organs/tissues besides the brain is still quite limited, reducing the possibility of broad-spectrum interventions. Here, for the first time, we report the presence of cardiac function/structure alterations in heterozygous Cdkl5 +/− female mice. We found a prolonged QT interval (corrected for the heart rate, QTc) and increased heart rate in Cdkl5 +/− mice. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Interestingly, Cdkl5 +/− hearts showed increased fibrosis, altered gap junction organization and connexin-43 expression, mitochondrial dysfunction, and increased ROS production. Together, these findings not only contribute to our understanding of the role of CDKL5 in heart structure/function but also document a novel preclinical phenotype for future therapeutic investigation.
Collapse
|
13
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
14
|
Fayazipour D, Deckert J, Akbari G, Soltani E, Chmielowska-Bąk J. Mitochondria Specific Antioxidant, MitoTEMPO, Modulates Cd Uptake and Oxidative Response of Soybean Seedlings. Antioxidants (Basel) 2022; 11:2099. [PMID: 36358472 PMCID: PMC9686940 DOI: 10.3390/antiox11112099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Numerous reports find that Cd induces formation of reactive oxygen species (ROS) in plants. However, a general ROS pool is usually studied, without distinction of their production site. In the present study, we applied a mitochondria-specific antioxidant, MitoTEMPO, to elucidate the role of mitochondria-derived ROS in the response of soybean seedlings to short-term (48 h) Cd stress. The obtained results showed that Cd caused a reduction in root length and fresh weight and increase in the level of superoxide anion, hydrogen peroxide, markers of lipid peroxidation (thiobarbituric reactive substances, TBARS) and markers of RNA oxidation (8-hydroxyguanosine, 8-OHG) in seedling roots. Application of MitoTEMPO affected Cd uptake in a dose-dependent manner and diminished the Cd-dependent induction of superoxide anion and lipid peroxidation.
Collapse
Affiliation(s)
- Dalir Fayazipour
- Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran, Tehran P.O. Box 3391653775, Iran
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, 61-712 Poznań, Poland
| | - Gholamali Akbari
- Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran, Tehran P.O. Box 3391653775, Iran
| | - Elias Soltani
- Department of Agronomy and Plant Breeding Sciences, College of Aboureihan, University of Tehran, Tehran P.O. Box 3391653775, Iran
| | - Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, 61-712 Poznań, Poland
| |
Collapse
|
15
|
Oxidative Stress in Cardiovascular Disease and Comorbidities. Antioxidants (Basel) 2022; 11:antiox11081519. [PMID: 36009237 PMCID: PMC9405212 DOI: 10.3390/antiox11081519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
|