1
|
Radha A, Ahluwalia V, Rai AK, Varjani S, Awasthi MK, Sindhu R, Binod P, Saran S, Kumar V. The way forward to produce nutraceuticals from agri-food processing residues: obstacle, solution, and possibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:429-443. [PMID: 38327860 PMCID: PMC10844164 DOI: 10.1007/s13197-023-05729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Food matrices contain bioactive compounds that have health benefits beyond nutritional value. The bulk of bioactive chemicals are still present in agro-industrial by-products as food matrices. Throughout the food production chain, there is a lot of agro-industrial waste that, if not managed effectively, could harm the environment, company, and how nutritiously and adequately people eat. It's important to establish processes that maximise the use of agro-industrial by-products, such as biological technologies that improve the extraction and acquisition of bioactive compounds for the food and pharmaceutical industries. As opposed to nonbiological processes, biological procedures provide high-quality, bioactive extracts with minimum toxicity and environmental impact. Fermentation and enzymatic treatment are biological processes for obtaining bioactive compounds from agro-industrial waste. In this context, this article summarises the principal bioactive components in agro-industrial byproducts and the biological methods employed to extract them. In this review efficient utilization of bioactive compounds from agro-industrial waste more effectively in food and pharmaceutical industries has been described.
Collapse
Affiliation(s)
- Anu Radha
- Fermentation and Microbial biotechnology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001 India
- Academy of Scientifc and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, 201002 India
| | - Vivek Ahluwalia
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 140 306 India
| | - Amit Kumar Rai
- Microbial Resources, Institute of Bioresources and Sustainable Development, Sikkim Centre, Gangtok, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Kowloon 999077 Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007 Uttarakhand India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100 Shaanxi Province People’s Republic of China
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691 505 India
| | - Parameswaran Binod
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala 695 019 India
| | - Saurabh Saran
- Fermentation and Microbial biotechnology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001 India
- Academy of Scientifc and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, 201002 India
| | - Vinod Kumar
- Fermentation and Microbial biotechnology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001 India
- Academy of Scientifc and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, 201002 India
| |
Collapse
|
2
|
Iannuzzo F, Cicatiello AG, Sagliocchi S, Schiano E, Nappi A, Miro C, Stornaiuolo M, Mollica A, Tenore GC, Dentice M, Novellino E. Therapeutic Effect of an Ursolic Acid-Based Nutraceutical on Neuronal Regeneration after Sciatic Nerve Injury. Int J Mol Sci 2024; 25:902. [PMID: 38255977 PMCID: PMC10815361 DOI: 10.3390/ijms25020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.
Collapse
Affiliation(s)
- Fortuna Iannuzzo
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.I.); (A.M.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Elisabetta Schiano
- Healthcare Food Research Center, Inventia Biotech s.r.l., S. S. Sannitica, 81020 Caserta, Italy; (E.S.); (E.N.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.I.); (A.M.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Ettore Novellino
- Healthcare Food Research Center, Inventia Biotech s.r.l., S. S. Sannitica, 81020 Caserta, Italy; (E.S.); (E.N.)
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|
3
|
Musto G, Schiano E, Iannuzzo F, Tenore GC, Novellino E, Stornaiuolo M. Genotoxicity Assessment of Nutraceuticals Extracted from Thinned Nectarine (Prunus persica L.) and Grape Seed (Vitis Vinifera L.) Waste Biomass. Foods 2023; 12:foods12061171. [PMID: 36981098 PMCID: PMC10048668 DOI: 10.3390/foods12061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Agri-food by-products represent a considerable portion of the waste produced in the world and especially when incorrectly disposed of, contribute to air, soil, and water pollution. Recently, recycling of food waste has proven to be an attractive area of research for pharmaceutical companies, that use agri-food by-products (leaves, bark, roots, seeds, second-best vegetables) as alternative raw material for the extraction of bioactive compounds. Developers and producers are however, advised to assess the safety of nutraceuticals obtained from biowaste that, in virtue of its chemical complexity, could undermine the overall safety of the final products. Here, in compliance with EFSA regulations, we use the Ames test (OECD 471) and the micronucleus test (OECD 487) to assess the mutagenicity of two nutraceuticals obtained from food waste. The first consists of grape seeds (Vitis vinifera L.) that have undergone a process of food-grade depolymerization of proanthocyanidins to release more bioavailable flavan-3-ols. The second nutraceutical product consists of thinned nectarines (Prunus persica L. var nucipersica) containing abscisic acid and polyphenols. The results presented here show that these products are, before as well as after metabolization, non-mutagenic, up to the doses of 5 mg and 100 μg per plate for the Ames and micronucleus test, respectively, and can be thus considered genotoxically safe.
Collapse
Affiliation(s)
- Giorgia Musto
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
4
|
Agri-Food Wastes as Natural Source of Bioactive Antioxidants. Antioxidants (Basel) 2023; 12:antiox12020351. [PMID: 36829910 PMCID: PMC9951869 DOI: 10.3390/antiox12020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nowadays, the health of the ecosystem and quality of life are jeopardized by the growing quantities of waste that are released into the environment [...].
Collapse
|
5
|
Bollati C, Marzorati S, Cecchi L, Bartolomei M, Li J, Bellumori M, d’Adduzio L, Verotta L, Piazza L, Arnoldi A, Mulinacci N, Lammi C. Valorization of the Antioxidant Effect of Mantua PGI Pear By-Product Extracts: Preparation, Analysis and Biological Investigation. Antioxidants (Basel) 2023; 12:antiox12010144. [PMID: 36671006 PMCID: PMC9854704 DOI: 10.3390/antiox12010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
For improving the management of the production chain of PGI Mantua pears (which comprises many varieties, including Abate Fetel), applying the cardinal principles of circular economy and sustainability, the fruits with diseases or defects were recovered for producing dried rounds of pears from the Abate Fetel cultivar, a new product with high nutritional value that extends the remaining life. This process led to the production of secondary and residual by-products, which are mainly composed of the highest and lowest part of the fruits, comprising seeds, pulps, peels and petioles. Hence, this study was focused on the valorization of these secondary by-products of Abate Fetel pears through the production of pear extracts using traditional and "green" extraction methods that involve the use of supercritical CO2 fluid extraction. The produced extracts, together with a reference solvent-derived extract, were analyzed by HPLC-ESI-MS, and in parallel, their direct and cellular antioxidant activity were assessed. Evidence has indicated that all the tested extracts reduced the H2O2-induced reactive oxygen species (ROS), lipid peroxidation and nitric oxide (NO) levels, respectively, in human intestinal Caco-2 cells. Hence, this study clearly suggests that extracts obtained from Mantuan PGI pear by-products may be used as valuable sources of bioactive upcycled phytocomplex for the development of dietary supplements and/or functional foods.
Collapse
Affiliation(s)
- Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lorenzo Cecchi
- Pharmaceutical and Nutraceutical Section, Department of Neuroscience, Psychology, Drug and Child Health, University of Florence, 50019 Florence, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Maria Bellumori
- Pharmaceutical and Nutraceutical Section, Department of Neuroscience, Psychology, Drug and Child Health, University of Florence, 50019 Florence, Italy
| | - Lorenza d’Adduzio
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Piazza
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Nadia Mulinacci
- Pharmaceutical and Nutraceutical Section, Department of Neuroscience, Psychology, Drug and Child Health, University of Florence, 50019 Florence, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|