1
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Antony MM, Pandey AK, Chaube SK. Damage mechanisms of bisphenols on the quality of mammalian oocytes. Hum Reprod 2024:deae284. [PMID: 39706892 DOI: 10.1093/humrep/deae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The extensive use of bisphenols in the plastics industry globally is a major growing concern for human health. Bisphenol compounds are easily leached out from plastic containers to food, beverages, and drinking water and contaminate the natural environment. Daily exposure of bisphenol compounds increases their load and impairs various organs, including the reproductive system. Bisphenol compounds directly or indirectly affect ovarian functions, such as folliculogenesis, steroidogenesis, oogenesis, and thereby oocyte quality. Bisphenol A (BPA) and its structural analogues act as endocrine disruptors and induce generation of reactive oxygen species (ROS) within the ovary. Excess levels of ROS induce death pathways in follicular steroidogenic cells and affect ovarian steroidogenesis. The reduced level of estradiol-17β impairs follicular growth and development that reduces the number and quality of oocytes. In addition, excess levels of ROS in follicular fluid trigger meiotic instability, which further deteriorates oocyte quality. The high level of ROS generates oxidative stress that triggers various death pathways in germ cells as well as in oocytes, induces follicular atresia, and depletes ovarian reserve. Although growing evidence indicates the destructive effects of bisphenol compounds at the level of ovary, potential effects and underlying mechanisms that deteriorate oocyte quality remain poorly understood. Therefore, this review summarizes the mechanisms by which bisphenols cause damage to the ovary, impair oocyte quality, and affect women's fertility.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mano Mohan Antony
- Centre for Molecular Evolutionary Genetics, Department of Zoology, Research Centre, University College Thiruvananthapuram, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Naveed M, Hill JW. The Underlying Effect of Urate Levels on Female Infertility. Metabolites 2024; 14:564. [PMID: 39452945 PMCID: PMC11509475 DOI: 10.3390/metabo14100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Female infertility is a complex and multifaceted condition that affects millions of women globally [...].
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Chen F, Zhu M, Li W. Advances in research on malignant transformation of endometriosis-associated ovarian cancer. Front Oncol 2024; 14:1475231. [PMID: 39445058 PMCID: PMC11496038 DOI: 10.3389/fonc.2024.1475231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Endometriosis (EMs) is a prevalent chronic gynecological condition that depends on estrogen, marked by the presence of active endometrial tissue (glands and stroma) outside the uterus. Although pathologically benign, it exhibits biological behaviors such as invasion and metastasis akin to malignant tumors. Endometriosis-associated ovarian carcinoma (EAOC), arising from malignant transformation of EMs, poses significant clinical challenges. However, the mechanisms underlying EAOC pathogenesis remain incompletely understood, with a lack of reliable biomarkers for early diagnosis and personalized treatment strategies. Considering the significant number of EMs patients and the extended period during which malignant transformation can occur, EAOC deserves significant attention. Current research both domestically and internationally indicates that the pathogenesis of EAOC is complex, involving genetic mutations, immune microenvironment, oxidative stress, epigenetic changes, and related areas. This review summarizes the mechanisms underlying the development of EAOC.
Collapse
Affiliation(s)
- Fang Chen
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| | - Mengying Zhu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenjuan Li
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
4
|
Kavarthapu R, Lou H, Pham T, Do H, Soliman ME, Badger T, Balasubramanian R, Huyhn V, De La Luz Sierra M, Yano Maher JC, Gomez-Lobo V. Single-nucleus and spatial transcriptomics of paediatric ovary: Molecular insights into the dysregulated signalling pathways underlying premature ovarian insufficiency in classic galactosemia. Clin Transl Med 2024; 14:e70043. [PMID: 39440457 DOI: 10.1002/ctm2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Classic galactosemia (CG) is an inborn error of galactose metabolism caused by mutations in the GALT gene. Premature ovarian insufficiency (POI) is a later complication that affects 80% of women with CG due to a significant decline in ovarian reserve (primordial follicle pool). The definite mechanisms underlying the early onset of POI in CG patients are not fully understood. METHODS In this study, we performed single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics on ovary tissue biopsies from prepubertal girls diagnosed with CG to investigate dynamic changes in gene expression and altered signalling pathways in granulosa cells, oocytes, and stromal cells. RESULTS We generated single-nucleus and spatial transcriptomics atlas of human ovaries from prepubertal girls diagnosed with and without CG. snRNA-seq profiling of the paediatric ovary revealed a diverse ovarian microenvironment with seven distinct major cell types. Our transcriptomic analysis revealed an increase in the expression of several endoplasmic reticulum stress and oxidative stress associated genes, which can promote apoptosis of granulosa cells in CG. PTEN/PI3K/AKT signalling, which is crucial for primordial follicle activation and survival was dysregulated as supported by upregulated PTEN transcripts and a significant reduction in phospho-AKT levels in the granulosa cells and oocytes. We also found a marked increase in expression of phospho-H2A.X, LC3A/B and CASP9 in the primordial follicles of CG ovaries suggesting DNA damage, autophagy, and accelerated follicular atresia. Furthermore, we noticed genes participating in extracellular matrix organisation, integrin and gap junction signalling, essential for structural support of the ovarian stroma were profoundly altered. CONCLUSIONS Our findings provide molecular insights into the dysregulated cellular signalling pathways essential for primordial follicle growth and survival that can explain the etiology of POI in CG patients. This study has implications in the development of future therapeutic interventions to preserve ovarian function and promote female reproductive health. HIGHLIGHTS Created a comprehensive single-nucleus transcriptomic atlas and spatial landscape of paediatric ovary tissue from prepubertal girls diagnosed with classic galactosemia (CG). Our transcriptomic analysis revealed activation of genes associated with ER-stress signalling, oxidative stress response and ATM signalling/DNA damage response as shown by significant increase in expression of p-EIF2A, p-H2A.X and LC3A/B in the primordial follicles of CG ovary. PTEN/PI3K/AKT signalling pathways was dysregulated evidenced by a significant reduction in phospho-AKT expression in the primordial follicles of CG ovary, suggesting impaired follicle activation and survival.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Hong Lou
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Thang Pham
- BioTuring Inc, San Diego, California, USA
| | - Han Do
- BioTuring Inc, San Diego, California, USA
| | - Mary E Soliman
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Taylor Badger
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Ramya Balasubramanian
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Victoria Huyhn
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Maria De La Luz Sierra
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Jacqueline C Yano Maher
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia, USA
| | - Veronica Gomez-Lobo
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Jiang C, Chen Z, Xiong H, Yang X, Liao W, Chen G, Huang C, Zhu G, Yu H, Ma L. Lycium barbarum berry extract improves female fertility against aging-related oxidative stress in the ovary. Food Funct 2024; 15:9779-9795. [PMID: 39224078 DOI: 10.1039/d4fo02720e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reproductive aging in female mammals is characterized by ovarian senescence, leading to a significant fertility decline. Lycium barbarum berry, or goji berry, is a food and medicine that appears in various formulas for treating infertility in traditional Chinese medicine. We investigated the function of an aqueous extract of Lycium barbarum berry (LB extract) to improve health status, fertility, and offspring development during female aging. Aged female mice were supplemented with LB extract, and its effects on fertility, locomotor activity, and offspring development were assessed. The results demonstrated that LB extract significantly increased pregnancy and live birth rates in naturally aged female mice. It also effectively improved aged animals' locomotor activity. Moreover, LB extract promoted the growth and development of offspring delivered from the aged animals and reduced the offspring's anxiety. During aging, fertility-related hormones gradually decline. However, the decline of anti-Müllerian hormone (AMH) and estradiol (E2) in the serum of aged mice was restored by LB extract supplementation. Immunohistochemical analysis revealed that the levels of oxidation and the inflammatory IL-6 in intra-ovarian cells were reduced by LB extract, while the antioxidant-associated proteins peroxiredoxin 4 (PRDX4) and nuclear factor erythroid 2-related factor 2 (NRF2) were increased. Bioinformatics analysis revealed a decline in egg PRDX4 expression with age across various species. This suggests that the antioxidant function protected by LB extract through PRDX4 may consistently promote fertility enhancement by improving ovarian function across different species. Importantly, LB extract did not induce significant adverse effects on aged female mice and their offspring. These findings highlight the potential of LB as a protective agent against ovarian oxidative stress, which preserves ovarian function and improves fertility rates in naturally senescent females.
Collapse
Affiliation(s)
- Chenyu Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Haoming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Xiao Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
6
|
Demyashkin G, Vadyukhin M, Murtazalieva Z, Pugacheva E, Schekin V, Bimurzaeva M, Pesegova S, Shegay P, Kaprin A. Novel Molecular Mechanisms Underlying the Ameliorative Effect of Platelet-Rich Plasma against Electron Radiation-Induced Premature Ovarian Failure. Int J Mol Sci 2024; 25:10115. [PMID: 39337598 PMCID: PMC11432445 DOI: 10.3390/ijms251810115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Radiotherapy is one of the risk factors for radiation-induced premature ovarian failure and infertility in cancer patients. The development of methods for ovarian radioprotection remains relevant. Moreover, electrons are a little-studied and promising method of radiation with the least toxic effect on normal tissues. The assessment of intracellular mechanisms regulating the protective effects of leukocyte-poor platelet-rich plasma in a model of radiation-induced premature ovarian failure caused by electron irradiation. Wistar rats were divided into four groups, namely a control group, irradiation group (electron exposure), irradiation + leukocyte-poor platelet-rich plasma group, and only leukocyte-poor platelet-rich plasma group. Fragments of ovaries were removed and hormonal, oxidant, histological, and morphometric studies were carried out. The cell cycle of ovarian follicles and the inflammatory and vascular response were assessed using immunohistochemistry. The activity of MAPK, ERK, and PI3K pathways was also assessed using the RT-qPCR. We found that electron irradiation causes a decrease in the functional activity of the ovaries and the death of follicular cells through apoptosis. The administration of LP-PRP led to a partial restoration of the cytokine balance. In addition, minor ovarian damage and mild inflammation were observed in this group. Leukocyte-poor platelet-rich plasma components have anti-inflammatory, angiogenetic, and radioprotective effects, reducing the activation of the NOX4, caspase and cytokine cascades, and inflammatory response severity through the MAPK/p38/JNK signaling pathway. This leads to the induction of endogenous antioxidant protection, the repair of post-radiation follicular damage, and slowing down the development of radiation-induced premature ovarian failure after electron irradiation.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zaira Murtazalieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Vladimir Schekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| | - Makka Bimurzaeva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Svetlana Pesegova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Sampaio OGM, Santos SAAR, Damasceno MDBMV, Joventino LB, Schneider A, Masternak MM, Campos AR, Cavalcante MB. Impact of repeated ovarian hyperstimulation on the reproductive function. J Reprod Immunol 2024; 164:104277. [PMID: 38889661 DOI: 10.1016/j.jri.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
One of six couples (17.5 % of the adult population) worldwide is affected by infertility during their lifetime. This number represents a substantial increase in the prevalence of this gynecological condition over the last decade. Ovulatory dysfunction and anovulation are the main causes of female infertility. Timed intercourse, intrauterine insemination, and assisted reproductive technology (ART), such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are the most common interventions for infertile couples. Ovulation induction protocols for IVF/ICSI routinely use supraphysiological doses of gonadotropins to stimulate many preovulatory follicles. Animal and human studies suggested that ovarian hyperstimulation, alone or repeatedly, for ART cycles can induce changes in the immune response and increase the oxidative stress (OS) in the ovarian microenvironment. The consequences of repeated ovarian hyperstimulation on the human ovary remain poorly understood, particularly in relation to the effects of ovarian stimulation on the immune system and the potential for ovarian stimulation to cause OS. Animal studies have observed that repeated cycles of ovarian hyperstimulation can accelerate ovarian aging. Changes in ovarian hormone levels, accelerated loss of ovarian reserve, disorders in ovarian ultrastructure, ovarian senescence, and decreased reproductive performance represent possible long-term effects of repeated ovarian hyperstimulation. The short and long-term impact of the combination of antioxidant agents in ovarian hyperstimulation protocols in women undergoing ART must urgently be better understood. The recent increase in the number of ART and fertility preservation cycles may accelerate ovarian aging in these women, promoting consequences beyond the reproductive function and including health deterioration.
Collapse
Affiliation(s)
| | | | | | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil
| | - Marcelo Borges Cavalcante
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; CONCEPTUS - Reproductive Medicine, Fortaleza, CE 60.170-240, Brazil.
| |
Collapse
|
8
|
Li Z, Li J, Li Y, Guo L, Xu P, Du H, Lin N, Xu Y. The role of Cistanches Herba and its ingredients in improving reproductive outcomes: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155681. [PMID: 38718638 DOI: 10.1016/j.phymed.2024.155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Infertility patients account for an astonishing proportion of individuals worldwide. Due to its complex etiology and challenging treatment, infertility has imposed significant psychological and economic burdens on many patients. C. Herba (Cistanche tubulosa (Schenk) Wight and Cistanche deserticola Ma), renowned as one of the most prominent Chinese herbal medicines (CHMs), is abundant in diverse bioactive compounds that exhibit therapeutic effects on many diseases related to oxidative stress (OS) and disorders of sex hormone levels. OBJECTIVE Due to the limited drugs currently used in clinical practice to improve reproductive outcomes and their inevitable side effects, developing safe and effective new medications for infertility is of significance. This article comprehensively reviewed the phytochemicals of C. Herba, focusing on their efficacy and mechanisms on infertility and their safety for the first time, aiming to offer valuable insights for the development and application of C. Herba, and for developing novel strategies for treating infertility. METHODS We used "Cistanche" and its known bioactive components in combination with "sperm", "testicles", "epididymis", "ovaries", "uterus", and "infertility" as keywords to search in PubMed, Web of Science, Scopus and CNKI up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS The therapeutic effects of C. Herba on infertility are mainly attributed to echinacoside (ECH), verbascoside (VB), salidroside (SAL), polysaccharides, and betaine. They can effectively improve spermatogenic dysfunction, gonadal dysfunction and erectile dysfunction (ED) by exerting anti-oxidation, sex hormones regulation and anti-hypoxia. Moreover, they can also improve premature ovarian failure (POF), ovarian and uterine cancer, oocyte maturation by exerting anti-oxidation, anti-apoptosis, and anti-cancer. C. Herba and its active ingredients also exhibit pleasing safety. CONCLUSION C. Herba is a promising source of natural medicine for infertility. Additionally, compared to current therapeutic drugs, its favorable safety also supports its development as a nutritional supplement. However, high-quality clinical studies are required to validate its effectiveness for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zehui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiashan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Panyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hanqian Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
9
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
10
|
Li S, Fan Y, Shu C, Zhou Y, Shu J. Methyl 3,4-dihydroxybenzoate alleviates oxidative damage in granulosa cells by activating Nrf2 antioxidant pathway. J Ovarian Res 2024; 17:87. [PMID: 38664755 PMCID: PMC11044314 DOI: 10.1186/s13048-024-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.
Collapse
Affiliation(s)
- Shishi Li
- Department of Reproductive Endocrinology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| | - Yuhang Fan
- Department of Reproductive Endocrinology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| | - Chongyi Shu
- Department of Reproductive Endocrinology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| | - Yier Zhou
- Department of Reproductive Endocrinology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, People's Republic of China
| | - Jing Shu
- Department of Reproductive Endocrinology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
11
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging. Reprod Sci 2024; 31:906-916. [PMID: 37917297 DOI: 10.1007/s43032-023-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Female fertility decreases during aging. The development of effective therapeutic strategies to address the age-related decline in oocyte quality and quantity and its accurate diagnosis remain major challenges. In this review, we summarize our current understanding of the study of aging and infertility, focusing primarily on the molecular basis of energy metabolism, mitochondrial function, and redox homeostasis in granulosa cells and oocytes, and discuss perspectives on future research directions. Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production, cellular redox homeostasis, aging, and senescence. Young granulosa cells favor glycolysis and actively produce pyruvate, NADPH, and other metabolites. Oocytes rely on oxidative phosphorylation fueled by nutrients, metabolites, and antioxidants provided by the adjacent granulosa cells. A reduced cellular energy metabolism phenotype, including both aerobic glycolysis and mitochondrial respiration, is characteristic of older female granulosa cells compared with younger female granulosa cells. Aged oocytes become more susceptible to oxidative damage to cells and mitochondria because of further depletion of antioxidant-dependent ROS scavenging systems. Molecular perturbations of gene expression caused by a subtle change in the follicular fluid microenvironment adversely affect energy metabolism and mitochondrial dynamics in granulosa cells and oocytes, further causing redox imbalance and accelerating aging and senescence. Furthermore, recent advances in technology are beginning to identify biofluid molecular markers that may influence follicular development and oocyte quality. Accumulating evidence suggests that redox imbalance caused by abnormal energy metabolism and/or mitochondrial dysfunction is closely linked to the pathophysiology of age-related subfertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichi-Jyonishi-Machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-Cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-Cho, Nara, 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
| |
Collapse
|
12
|
Liu X, Chen X, Wang C, Song J, Xu J, Gao Z, Huang Y, Suo H. Mechanisms of probiotic modulation of ovarian sex hormone production and metabolism: a review. Food Funct 2024; 15:2860-2878. [PMID: 38433710 DOI: 10.1039/d3fo04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sex hormones play a pivotal role in the growth and development of the skeletal, neurological, and reproductive systems. In women, the dysregulation of sex hormones can result in various health complications such as acne, hirsutism, and irregular menstruation. One of the most prevalent diseases associated with excess androgens is polycystic ovary syndrome with a hyperandrogenic phenotype. Probiotics have shown the potential to enhance the secretion of ovarian sex hormones. However, the underlying mechanism of action remains unclear. Furthermore, comprehensive reviews detailing how probiotics modulate ovarian sex hormones are scarce. This review seeks to shed light on the potential mechanisms through which probiotics influence the production of ovarian sex hormones. The role of probiotics across various biological axes, including the gut-ovarian, gut-brain-ovarian, gut-liver-ovarian, gut-pancreas-ovarian, and gut-fat-ovarian axes, with a focus on the direct impact of probiotics on the ovaries via the gut and their effects on brain gonadotropins is discussed. It is also proposed herein that probiotics can significantly influence the onset, progression, and complications of ovarian sex hormone abnormalities. In addition, this review provides a theoretical basis for the therapeutic application of probiotics in managing sex hormone-related health conditions.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, P. R. China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
13
|
Mohammadi N, Hemmati M, Motlagh B, Biyabani A. Betaine postpones hyperglycemia-related senescence in ovarian and testicular cells: Involvement of RAGE and β-galactosidase. Cell Biochem Funct 2024; 42:e3973. [PMID: 38488483 DOI: 10.1002/cbf.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
The structural and functional disorders of the testis and ovary are one of the main complications of hyperglycemia. Betaine is a trimethyl glycine with antioxidant, antidiabetic, and anti-inflammatory potential. The aim of this study is to investigate the potential of betaine on the expression of aging and oxidative stress markers in ovarian and testicular cells under hyperglycemic conditions. Testicular and ovarian cells were subjected to four different conditions, including normal glucose and hyperglycemia, with or without betaine (5 mM). The cells with hyperglycemia saw an increase in malondialdehyde (MDA), methylglyoxal (MGO), expression of a receptor for AGE, and aging-related genes (β-GAL), and a decrease in the activity of antioxidant enzymes including catalase, glutathione peroxidase, and superoxide dismutase. The treatment with betaine, in contrast, decreased the amount of MGO and MDA, and also downregulated aging-related signaling. Although hyperglycemia induces senescence in testicular and ovarian cells, the use of betaine may have a protective effect against the cell senescence, which may be useful in the management of infertility.
Collapse
Affiliation(s)
- Neda Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrouz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
15
|
Vašková J, Klepcová Z, Špaková I, Urdzík P, Štofilová J, Bertková I, Kľoc M, Rabajdová M. The Importance of Natural Antioxidants in Female Reproduction. Antioxidants (Basel) 2023; 12:antiox12040907. [PMID: 37107282 PMCID: PMC10135990 DOI: 10.3390/antiox12040907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress (OS) has an important role in female reproduction, whether it is ovulation, endometrium decidualization, menstruation, oocyte fertilization, or development andimplantation of an embryo in the uterus. The menstrual cycle is regulated by the physiological concentration of reactive forms of oxygen and nitrogen as redox signal molecules, which trigger and regulate the length of individual phases of the menstrual cycle. It has been suggested that the decline in female fertility is modulated by pathological OS. The pathological excess of OS compared to antioxidants triggers many disorders of female reproduction which could lead to gynecological diseases and to infertility. Therefore, antioxidants are crucial for proper female reproductive function. They play a part in the metabolism of oocytes; in endometrium maturation via the activation of antioxidant signaling pathways Nrf2 and NF-κB; and in the hormonal regulation of vascular action. Antioxidants can directly scavenge radicals and act as a cofactor of highly valuable enzymes of cell differentiation and development, or enhance the activity of antioxidant enzymes. Compensation for low levels of antioxidants through their supplementation can improve fertility. This review considers the role of selected vitamins, flavonoids, peptides, and trace elements with antioxidant effects in female reproduction mechanisms.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Zuzana Klepcová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
- Medirex, a.s., Holubyho 35, 902 01 Pezinok, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Štofilová
- Center for Clinical and Preclinical Research MEDIPARK, Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Izabela Bertková
- Center for Clinical and Preclinical Research MEDIPARK, Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Marek Kľoc
- Medirex, a.s., Holubyho 35, 902 01 Pezinok, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
16
|
Aydemir D, Ulusu NN. The possible role of the endocrine disrupting chemicals on the premature and early menopause associated with the altered oxidative stress metabolism. Front Endocrinol (Lausanne) 2023; 14:1081704. [PMID: 36864843 PMCID: PMC9971557 DOI: 10.3389/fendo.2023.1081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Affiliation(s)
- Duygu Aydemir
- Koc University, School of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
17
|
Zhou XY, Li X, Zhang J, Li Y, Wu XM, Yang YZ, Zhang XF, Ma LZ, Liu YD, Wang Z, Chen SL. Plasma metabolomic characterization of premature ovarian insufficiency. J Ovarian Res 2023; 16:2. [PMID: 36600288 PMCID: PMC9814329 DOI: 10.1186/s13048-022-01085-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) patients are predisposed to metabolic disturbances, including in lipid metabolism and glucose metabolism, and metabolic disorders appear to be a prerequisite of the typical long-term complications of POI, such as cardiovascular diseases or osteoporosis. However, the metabolic changes underlying the development of POI and its subsequent complications are incompletely understood, and there are few studies characterizing the disturbed metabolome in POI patients. The aim of this study was to characterize the plasma metabolome in POI by using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics and to evaluate whether these disturbances identified in the plasma metabolome relate to ovarian reserve and have diagnostic value in POI. METHODS This observational study recruited 30 POI patients and 30 age- and body mass index (BMI)-matched controls in the Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, from January 2018 to October 2020. Fasting venous blood was collected at 9:00 am on days 2-4 of the menstrual cycle and centrifuged for analysis. An untargeted quantitative metabolomic analysis was performed using UHPLC-MS/MS. RESULTS Our study identified 48 upregulated and 21 downregulated positive metabolites, and 13 upregulated and 48 downregulated negative metabolites in the plasma of POI patients. The differentially regulated metabolites were involved in pathways such as caffeine metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Six metabolites with an AUC value > 0.8, including arachidonoyl amide, 3-hydroxy-3-methylbutanoic acid, dihexyl nonanedioate, 18-HETE, cystine, and PG (16:0/18:1), were correlated with ovarian reserve and thus have the potential to be diagnostic biomarkers of POI. CONCLUSION This UHPLC-MS/MS untargeted metabolomics study revealed differentially expressed metabolites in the plasma of patients with POI. The differential metabolites may not only be involved in the aetiology of POI but also contribute to its major complications. These findings offer a panoramic view of the plasma metabolite changes caused by POI, which may provide useful diagnostic and therapeutic clues for POI disease.
Collapse
Affiliation(s)
- Xing-Yu Zhou
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xin Li
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Jun Zhang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Ying Li
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xiao-Min Wu
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Yi-Zhen Yang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xiao-Fei Zhang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Lin-Zi Ma
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Yu-Dong Liu
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Zhe Wang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Shi-Ling Chen
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| |
Collapse
|
18
|
Dinca AL, Diaconu A, Birla RD, Coculescu BI, Dinca VG, Manole G, Marica C, Tudorache IS, Panaitescu E, Constantinoiu SM, Coculescu EC. Systemic inflammation factors as survival prognosis markers in ovarian neoplasm and the relationship with cancer-associated inflammatory mediators-a review. Int J Immunopathol Pharmacol 2023; 37:3946320231178769. [PMID: 37246293 DOI: 10.1177/03946320231178769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
At the level of the genital system, ovarian neoplasm is the most frequent cause of morbidity and mortality. In the specialized literature, the coexistence of an inflammatory process is admitted from the early stages of the evolution of this pathology. Starting from the importance of this process, both in determinism and in the evolution of carcinogenesis and summarizing the field of knowledge, for this study we considered two objectives: the first was the presentation of the pathogenic mechanism, through which chronic +ovarian inflammation is involved in the process of carcinogenesis, and the second is the justification of the clinical utility of the three parameters, accepted as biomarkers of systemic inflammation: neutrophil-lymphocyte ratio, platelet lymphocyte ratio, and lymphocyte-monocyte ratio in the assessment of prognosis. The study highlights the acceptance of these hematological parameters, with practical utility, as prognostic biomarkers in ovarian cancer, based on the intrinsic link with cancer-associated inflammatory mediators. Based on the data from the specialized literature, the conclusion is that in ovarian cancer, the inflammatory process induced by the presence of the tumor, induces changes in the types of circulating leukocytes, with immediate effects on the markers of systemic inflammation.
Collapse
Affiliation(s)
| | - Adriana Diaconu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Rodica Daniela Birla
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | | | - Gheorghe Manole
- Romanian Academy of Medical Sciences
- Faculty of General Nursing, Bioterra University, Bucharest, Romania
| | - Cristian Marica
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Eugenia Panaitescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Elena Claudia Coculescu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|