1
|
Yau YF, Cheah IK, Mahendran R, Tang RM, Chua RY, Goh RE, Feng L, Li J, Kua EH, Chen C, Halliwell B. Investigating the efficacy of ergothioneine to delay cognitive decline in mild cognitively impaired subjects: A pilot study. J Alzheimers Dis 2024; 102:841-854. [PMID: 39544014 DOI: 10.1177/13872877241291253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND Dementia, particularly Alzheimer's disease, is a major healthcare challenge in ageing societies. OBJECTIVE This study aimed to investigate the efficacy and safety of a dietary compound, ergothioneine, in delaying cognitive decline in older individuals. METHODS Nineteen subjects aged 60 or above with mild cognitive impairment were recruited for this double-blinded, randomized, and placebo-controlled study (ClinicalTrials.gov identifier: NCT03641404, registration date: 19/08/2018). Subjects received either ergothioneine (25 mg per capsule) or a placebo, taken 3 times a week for one year. The whole blood profile, markers of renal and liver functions, neurocognitive performance, plasma levels of ergothioneine and its metabolites, and plasma biomarkers related to neurodegeneration were measured across the study. RESULTS Ergothioneine intake did not alter clinical safety markers (blood counts, kidney and liver function) throughout the study, further validating its safety for human consumption. Subjects receiving ergothioneine demonstrated improved performance in assessment of learning ability and stabilized plasma levels of neurofilament light chain, compared with the placebo group, which saw no improvement in cognitive assessments and a significant increase in neurofilament light chain levels. CONCLUSIONS Prolonged intake of ergothioneine showed no toxicity in elderly people. Enhanced Rey Auditory Verbal Learning Test performance and stabilized neurofilament light chain levels suggest improvements in memory and learning abilities and a deceleration of neuronal damage, respectively. Our results add to existing data that ergothioneine is safe for extended consumption and may hold the potential to delay cognitive decline in elderly adults.
Collapse
Affiliation(s)
- Yu Fung Yau
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Science Institute, National University of Singapore, Singapore
| | - Rathi Mahendran
- Mind Science Centre, Department of Psychological Medicine, National University Health System, Singapore
- Mind Care Clinic Singapore, Farrer Park Medical Centre, Singapore
| | - Richard My Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Science Institute, National University of Singapore, Singapore
| | - Ru Yuan Chua
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rachel Es Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lei Feng
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jialiang Li
- Department of Statistics and Data Science, National University of Singapore, Singapore
| | - Ee Heok Kua
- Mind Science Centre, Department of Psychological Medicine, National University Health System, Singapore
- Mind Care Clinic Singapore, Farrer Park Medical Centre, Singapore
| | - Christopher Chen
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Ageing and Cognition Centre, National University Health System, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Science Institute, National University of Singapore, Singapore
| |
Collapse
|
2
|
Sim MA, Tan ESJ, Chan SP, Cai Y, Chai YL, Chong JR, Chong EJY, Robert C, Venketasubramanian N, Tan BY, Lai MKP, Hilal S, Chen CLH. Associations of Circulating Platelet Endothelial Cell Adhesion Molecule-1 Levels With Progression of Cerebral Small-Vessel Disease, Cognitive Decline, and Incident Dementia. J Am Heart Assoc 2024; 13:e035133. [PMID: 39526361 DOI: 10.1161/jaha.124.035133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The association between platelet endothelial cell adhesion molecule-1 (PECAM-1) with cerebral small-vessel disease and cognition in dementia-free subjects remains uninvestigated. METHODS AND RESULTS A prospective cohort of dementia-free subjects was recruited from memory clinics and followed up for 5 years. Annual neurocognitive assessments and twice-yearly brain magnetic resonance imaging scans were performed. Associations of baseline plasma PECAM-1 levels with cerebral small-vessel disease, cognitive decline (Montreal Cognitive Assessment scores and executive function Z scores), and incident dementia were evaluated. Of 213 subjects (aged 70.2±7.7 years, 51.2% men), median PECAM-1 levels were 0.790 (interquartile range, 0.645-0.955 ng/mL). Compared with the highest tertile, subjects within the lowest PECAM-1 tertile had greater cross-sectional white matter hyperintensity volume (β=4.84 [95% CI, 0.67-9.01]; P=0.023), age-related white matter change scores (β=1.39 [95% CI, 0.12-2.67]; P=0.033), and cerebral microbleeds (Adjusted risk ratio, 2.59 [95% CI, 1.19-5.62]; P=0.016). Of the 204 participants with follow-up data (median, 60.0 [interquartile range, 60.0-60.0] months), 24 (11.8%) developed incident dementia. Compared with the highest tertile, subjects within the lower tertiles of PECAM-1 had a higher risk of incident dementia (first tertile: adjusted hazard ratio [AHR], 4.52 [95% CI, 1.35-15.13]; P=0.024; second tertile: AHR, 3.28 [95% CI, 1.02-10.60]; P=0.047). The lowest PECAM-1 tertile was associated with greater progression of white matter hyperintensity volume (β=4.15 [95% CI, 0.06-8.24]; P=0.047), cerebral microbleeds (incident relative risk [IRR], 2.21 [95% CI, 1.05-4.65]; P=0.036), and decline in executive function (β=-0.45 [95% CI, -0.76 to -0.14]; P=0.004), and Montreal Cognitive Assessment (β=-1.32 [95% CI, -2.30 to -0.35]; P=0.008) scores. CONCLUSIONS In dementia-free subjects, lower circulating PECAM-1 levels are associated with greater cerebral small-vessel disease progression and cognitive decline, thus warranting future study as a potential therapeutic target.
Collapse
Affiliation(s)
- Ming Ann Sim
- Department of Anaesthesia National University Health System Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore
- Memory Aging and Cognition Centre National University Health System Singapore
| | - Eugene S J Tan
- Yong Loo Lin School of Medicine National University of Singapore Singapore
- National University Heart Centre Singapore, National University Heath System Singapore
- Cardiovascular Research Institute, National University of Singapore Singapore
| | - Siew Pang Chan
- National University Heart Centre Singapore, National University Heath System Singapore
- Cardiovascular Research Institute, National University of Singapore Singapore
| | - Yuan Cai
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Hong Kong
| | - Yuek Ling Chai
- Memory Aging and Cognition Centre National University Health System Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Joyce Ruifen Chong
- Memory Aging and Cognition Centre National University Health System Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Eddie Jun Yi Chong
- Memory Aging and Cognition Centre National University Health System Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Caroline Robert
- Yong Loo Lin School of Medicine National University of Singapore Singapore
- Memory Aging and Cognition Centre National University Health System Singapore
| | | | | | - Mitchell K P Lai
- Yong Loo Lin School of Medicine National University of Singapore Singapore
- Memory Aging and Cognition Centre National University Health System Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre National University Health System Singapore
- National University of Singapore, Saw Swee Hock School of Public Health Singapore
| | - Christopher L H Chen
- Yong Loo Lin School of Medicine National University of Singapore Singapore
- Memory Aging and Cognition Centre National University Health System Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore
| |
Collapse
|
3
|
Tang C, Zhang L, Wang J, Zou C, Zhang Y, Yuan J. Engineering Saccharomyces boulardii for Probiotic Supplementation of l-Ergothioneine. Biotechnol J 2024; 19:e202400527. [PMID: 39562168 DOI: 10.1002/biot.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Chaoqun Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Congjia Zou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yalin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
4
|
Katsube M, Ishimoto T, Fukushima Y, Kagami A, Shuto T, Kato Y. Ergothioneine promotes longevity and healthy aging in male mice. GeroScience 2024; 46:3889-3909. [PMID: 38446314 PMCID: PMC11226696 DOI: 10.1007/s11357-024-01111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.
Collapse
Affiliation(s)
- Makoto Katsube
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Uffelman CN, Harold R, Hodson ES, Chan NI, Foti D, Campbell WW. Effects of Consuming White Button and Oyster Mushrooms within a Healthy Mediterranean-Style Dietary Pattern on Changes in Subjective Indexes of Brain Health or Cognitive Function in Healthy Middle-Aged and Older Adults. Foods 2024; 13:2319. [PMID: 39123511 PMCID: PMC11311880 DOI: 10.3390/foods13152319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Limited research suggests mushroom consumption may improve indexes of brain health. Mushrooms contain bioactive compounds and antioxidants capable of crossing the blood-brain barrier and impacting vital neurological processes. We conducted a randomized controlled feeding trial assessing the effects of adopting a healthy U.S. Mediterranean-style dietary pattern (MED) with or without mushrooms on indexes of brain health and well-being. Sixty adults (aged 46 ± 12 y; BMI 28.3 ± 2.84 kg/m2; mean ± SD) without severe depression consumed a fully controlled MED diet with 84 g/d of mushrooms (4 d/week white button and 3 d/week oyster) or without (control with breadcrumbs) for 8 weeks. At baseline and post-intervention, surveys were used to evaluate anxiety, depression, mood, and well-being, and behavioral tests were used to evaluate cognition. Consumption of the MED diet, with or without mushrooms, increased (improved) self-reported vigor/activity (Time p = 0.026) and both behavioral measures of immediate memory (Time p < 0.05). Mixed effects were observed for other domains of neuropsychological function, and there were no changes in other measured indexes of brain health with the consumption of either MED diet. Adopting a healthy MED-style dietary pattern, with or without consuming white button and oyster mushrooms, may improve vigor/activity and immediate memory among middle-aged and older adults.
Collapse
Affiliation(s)
- Cassi N. Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA (E.S.H.); (N.I.C.)
| | - Roslyn Harold
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Emily S. Hodson
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA (E.S.H.); (N.I.C.)
| | - Nok In Chan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA (E.S.H.); (N.I.C.)
| | - Daniel Foti
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA (E.S.H.); (N.I.C.)
| |
Collapse
|
6
|
Tor-Roca A, Sánchez-Pla A, Korosi A, Pallàs M, Lucassen PJ, Castellano-Escuder P, Aigner L, González-Domínguez R, Manach C, Carmona F, Vegas E, Helmer C, Feart C, Lefèvre-Arbogast S, Neuffer J, Lee H, Thuret S, Andres-Lacueva C, Samieri C, Urpi-Sarda M. A Mediterranean Diet-Based Metabolomic Score and Cognitive Decline in Older Adults: A Case-Control Analysis Nested within the Three-City Cohort Study. Mol Nutr Food Res 2024; 68:e2300271. [PMID: 37876144 DOI: 10.1002/mnfr.202300271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/04/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Evidence on the Mediterranean diet (MD) and age-related cognitive decline (CD) is still inconclusive partly due to self-reported dietary assessment. The aim of the current study is to develop an MD- metabolomic score (MDMS) and investigate its association with CD in community-dwelling older adults. METHODS AND RESULTS This study includes participants from the Three-City Study from the Bordeaux (n = 418) and Dijon (n = 422) cohorts who are free of dementia at baseline. Repeated measures of cognition over 12 years are collected. An MDMS is designed based on serum biomarkers related to MD key food groups and using a targeted metabolomics platform. Associations with CD are investigated through conditional logistic regression (matched on age, sex, and education level) in both sample sets. The MDMS is found to be inversely associated with CD (odds ratio [OR] [95% confidence interval (CI)] = 0.90 [0.80-1.00]; p = 0.048) in the Bordeaux (discovery) cohort. Results are comparable in the Dijon (validation) cohort, with a trend toward significance (OR [95% CI] = 0.91 [0.83-1.01]; p = 0.084). CONCLUSIONS A greater adherence to the MD, here assessed by a serum MDMS, is associated with lower odds of CD in older adults.
Collapse
Affiliation(s)
- Alba Tor-Roca
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alex Sánchez-Pla
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institut of Neurosciences, University of Barcelona, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red en Neurodegeneracion, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Pol Castellano-Escuder
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Francisco Carmona
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Esteban Vegas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Catherine Feart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Sophie Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Jeanne Neuffer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Cécilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
7
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
8
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
9
|
Apparoo Y, Wei Phan C, Rani Kuppusamy U, Chan EWC. Potential role of ergothioneine rich mushroom as anti-aging candidate through elimination of neuronal senescent cells. Brain Res 2024; 1824:148693. [PMID: 38036238 DOI: 10.1016/j.brainres.2023.148693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through β-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Kenny L, Brown L, Ortea P, Tuytten R, Kell D. Relationship between the concentration of ergothioneine in plasma and the likelihood of developing pre-eclampsia. Biosci Rep 2023; 43:BSR20230160. [PMID: 37278746 PMCID: PMC10326187 DOI: 10.1042/bsr20230160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023] Open
Abstract
Ergothioneine, an antioxidant nutraceutical mainly at present derived from the dietary intake of mushrooms, has been suggested as a preventive for pre-eclampsia (PE). We analysed early pregnancy samples from a cohort of 432 first time mothers as part of the Screening for Endpoints in Pregnancy (SCOPE, European branch) project to determine the concentration of ergothioneine in their plasma. There was a weak association between the ergothioneine levels and maternal age but none for BMI. Of these 432 women, 97 went on to develop pre-term (23) or term (74) PE. If a threshold was set at the 90th percentile of the reference range in the control population (≥462 ng/ml), only one of these 97 women (1%) developed PE, versus 96/397 (24.2%) whose ergothioneine level was below this threshold. One possible interpretation of these findings, consistent with previous experiments in a reduced uterine perfusion model in rats, is that ergothioneine may indeed prove protective against PE in humans. An intervention study of some kind now seems warranted.
Collapse
Affiliation(s)
- Louise C. Kenny
- Department of Women’s and Children’s Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| | | | | | | | | | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7BX, U.K
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
12
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Protective Effect of Ergothioneine against 7-Ketocholesterol-Induced Mitochondrial Damage in hCMEC/D3 Human Brain Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065498. [PMID: 36982572 PMCID: PMC10056831 DOI: 10.3390/ijms24065498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Recent findings have suggested that the natural compound ergothioneine (ET), which is synthesised by certain fungi and bacteria, has considerable cytoprotective potential. We previously demonstrated the anti-inflammatory effects of ET on 7-ketocholesterol (7KC)-induced endothelial injury in human blood-brain barrier endothelial cells (hCMEC/D3). 7KC is an oxidised form of cholesterol present in atheromatous plaques and the sera of patients with hypercholesterolaemia and diabetes mellitus. The aim of this study was to elucidate the protective effect of ET on 7KC-induced mitochondrial damage. Exposure of human brain endothelial cells to 7KC led to a loss of cell viability, together with an increase in intracellular free calcium levels, increased cellular and mitochondrial reactive oxygen species, a decrease in mitochondrial membrane potential, reductions in ATP levels, and increases in mRNA expression of TFAM, Nrf2, IL-1β, IL-6 and IL-8. These effects were significantly decreased by ET. Protective effects of ET were diminished when endothelial cells were coincubated with verapamil hydrochloride (VHCL), a nonspecific inhibitor of the ET transporter OCTN1 (SLC22A4). This outcome demonstrates that ET-mediated protection against 7KC-induced mitochondrial damage occurred intracellularly and not through direct interaction with 7KC. OCTN1 mRNA expression itself was significantly increased in endothelial cells after 7KC treatment, consistent with the notion that stress and injury may increase ET uptake. Our results indicate that ET can protect against 7KC-induced mitochondrial injury in brain endothelial cells.
Collapse
|
15
|
Salai KHT, Wu LY, Chong JR, Chai YL, Gyanwali B, Robert C, Hilal S, Venketasubramanian N, Dawe GS, Chen CP, Lai MKP. Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease. Biomolecules 2023; 13:biom13030525. [PMID: 36979460 PMCID: PMC10046240 DOI: 10.3390/biom13030525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Tumor necrosis factor-receptor 1 (TNF-R1)-mediated signaling is critical to the regulation of inflammatory responses. TNF-R1 can be proteolytically released into systemic blood circulation in a soluble form (sTNF-R1), where it binds to circulating TNF and functions to attenuate TNF-mediated inflammation. Increases of peripheral sTNF-R1 have been reported in both Alzheimer’s disease (AD) dementia and vascular dementia (VaD). However, the status of sTNF-R1 in predementia subjects (cognitive impairment, no dementia, CIND) is unknown, and putative associations with cerebral small vessel disease (CSVD), as well as with longitudinal changes in cognitive functions are unclear. We measured baseline serum sTNF-R1 in a longitudinally assessed cohort of 93 controls and 103 CIND, along with neuropsychological evaluations and neuroimaging assessments. Serum sTNF-R1 levels were increased in CIND compared with controls (p < 0.001). Higher baseline sTNF-R1 levels were specifically associated with lacunar infarcts (rate ratio = 6.91, 95% CI 3.19–14.96, p < 0.001), as well as lower rates of cognitive decline in the CIND subgroup. Our data suggest that sTNF-R1 interacts with vascular cognitive impairment in a complex manner at predementia stages, with elevated levels associated with more severe CSVD at baseline, but which may subsequently be protective against cognitive decline.
Collapse
Affiliation(s)
- Kaung H. T. Salai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Joyce R. Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Bibek Gyanwali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Caroline Robert
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Departments of Epidemiology and Radiology & Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Gavin S. Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Neurobiology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Mitchell K. P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
- Correspondence:
| |
Collapse
|
16
|
Hartmann L, Seebeck FP, Schmalz HG, Gründemann D. Isotope-labeled ergothioneine clarifies the mechanism of reaction with singlet oxygen. Free Radic Biol Med 2023; 198:12-26. [PMID: 36736443 DOI: 10.1016/j.freeradbiomed.2023.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Recently we have uncovered a non-enzymatic multi-step cycle for the regeneration of ergothioneine (ET), after reaction with noxious singlet oxygen (1O2), by glutathione (GSH). When living cells were loaded with ET labeled with deuterium and N-15 atoms (D5-ET) and exposed to light in the presence of a photosensitizer, no loss of deuterium at position 5 of the imidazole ring was observed, in contradiction to our previous mechanistic proposal. Therefore, it was necessary to reexamine the in vitro products of ET and 1O2 by liquid chromatography coupled to high resolution mass spectrometry. Pure 1O2 was generated by thermolysis at 37 °C of the endoperoxide DHPNO2. The use of D5-ET enabled us to revise and extend the reaction scheme. On the main pathway, 1O2 attacks the imidazole ring, and the hydroperoxide intermediates are reduced rapidly by ET or GSH via different mechanisms. The intramolecular water elimination from the 5-hydroperoxide described previously is slower and not a part of the cycle. On another side path, 1O2 attacks the sulfur of ET to form a sulfine (S-oxide). The reduction of the sulfine also allows for the complete regeneration of ET. Experiments with methanol instead of water as solvent revealed that, in the absence of GSH, ET was attacked 6 times more frequently at the ring than at the sulfur. In the presence of 1 mM GSH or higher, both side paths were abandoned. ET efficiently captures 1O2 with its ring and can then be regenerated to a large extent by GSH, without enzyme involvement.
Collapse
Affiliation(s)
- Lea Hartmann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Dirk Gründemann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany.
| |
Collapse
|
17
|
Tian X, Thorne JL, Moore JB. Ergothioneine: an underrecognised dietary micronutrient required for healthy ageing? Br J Nutr 2023; 129:104-114. [PMID: 38018890 PMCID: PMC9816654 DOI: 10.1017/s0007114522003592] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023]
Abstract
Ergothioneine is a naturally occurring amino acid and thiol antioxidant found in high amounts in mushrooms and fermented foods. Humans and animals acquire ergothioneine from the diet through the pH-dependent activity of a membrane transporter, the large solute carrier 22A member 4 (SLC22A4), expressed on the apical membrane of the small intestine. The SLC22A4 transporter also functions in the renal reabsorption of ergothioneine in the kidney, with avid absorption and retention of ergothioneine from the diet observed in both animals and humans. Ergothioneine is capable of scavenging a diverse range of reactive oxygen and nitrogen species, has metal chelation properties, and is predicted to directly regulate nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Although not lethal, the genetic knockout of the SLC22A4 gene in multiple organisms increases susceptibility to oxidative stress, damage and inflammation; in agreement with a large body of preclinical data suggesting the physiological function of ergothioneine is as a cellular antioxidant and cytoprotectant agent. In humans, blood levels of ergothioneine decline after the age of 60 years, and lower levels of ergothioneine are associated with more rapid cognitive decline. Conversely, high plasma ergothioneine levels have been associated with significantly reduced cardiovascular mortality and overall mortality risks. In this horizon’s manuscript, we review evidence suggesting critical roles for dietary ergothioneine in healthy ageing and the prevention of cardiometabolic disease. We comment on some of the outstanding research questions in the field and consider the question of whether or not ergothioneine should be considered a conditionally essential micronutrient.
Collapse
Affiliation(s)
- Xiaoying Tian
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - James L. Thorne
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
18
|
Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 2022; 170:111982. [PMID: 36244584 DOI: 10.1016/j.exger.2022.111982] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre (CIC), 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikneswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|