1
|
Erol E, Erol KF, Yanikoglu RS, Taskin C, Kizilarslan Hancer C, Topcu G. Quantitative Determination of the Cytotoxic Compounds in Different Organs of Arctium minus (Hill) Bernh. by LC-HRESIMS Using Respond Survey Methodology. ACS OMEGA 2024; 9:41890-41903. [PMID: 39398114 PMCID: PMC11465267 DOI: 10.1021/acsomega.4c06644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Arctium minus (Hill) Bernh., commonly known as "Burdock", is a species within the Arctium genus of the Asteraceae family. Determining the optimum extraction conditions to obtain a concentrated extract with targeted active ingredients guides the most efficient use of natural products. Herein, ultrasound-assisted extraction (UAE) was optimized by using response surface methodology (RSM) to extract bioactive compounds from different organs of A. minus. Furthermore, phytochemical composition of extracts of the A. minus was investigated by using liquid chromatography-high resolution electrospray ionization mass spectrometry (LC-HRESIMS), antioxidant potential by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), diazanium;3-ethyl-2-[(3-ethyl-6-sulfonato-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonate (ABTS), CUPRAC, and metal chelation assays, and cytotoxic activities by using human breast cancer cell line (MDA-MB-231) and hepatocellular carcinoma cancer cell line (HepG2), and compared against conventional methods; Soxhlet and maceration. The RSM was employed to investigate the influence of ultrasound power, extraction time, and extraction temperature on the antioxidant potential assessed by the DPPH free radical scavenging assay. In UAE of A. minus leaves, flowers, and branches, the conditions resulting in the minimum IC50 values: 20 °C for 6 min at 50 W for leaves, 20 °C for 3 min at 100 W for flowers, and 20 °C for 3 min at 100 W for branches. Chlorogenic acid was identified as the major phenolic compound in the extracts obtained by UAE, with concentrations of 24,666.96 μg/g in leaves, 1054.92 μg/g in flowers, and 3,501.24 μg/g in branches. Flowers of A. minus had significantly higher levels of arctiin and arctigenin than those of leaves and branches. Extracts from leaves and flowers were more effective against MDA-MB-231 and HepG2 cancer cell lines than arctiin and arctigenin.
Collapse
Affiliation(s)
- Ebru Erol
- Department
of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Kubra Feyza Erol
- Department
of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34093 Istanbul, Türkiye
| | - Rabia Sare Yanikoglu
- Department
of Biochemistry, Faculty of Pharmacy, Bezmialem
Vakif University, 34093 Istanbul, Türkiye
| | - Cem Taskin
- Department
of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Cagla Kizilarslan Hancer
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Gulacti Topcu
- Department
of Pharmacognosy, Faculty of Pharmacy, Bezmialem
Vakif University, 34093 Istanbul, Türkiye
- Drug
Application
and Research Center, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| |
Collapse
|
2
|
Cakmak U. Phytochemical analyses by LC-HRMS, FTIR spectral analysis, antioxidant, antidiabetic and antityrosinase activity of Crataegus orientalis Pall. ex M. Bieb fruit extracted with various solvents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3767-3775. [PMID: 38284463 DOI: 10.1002/jsfa.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Crataegus orientalis Pall. ex M. Bieb fruit (COPMB) is extensively used as a source of various products in the medicinal-aromatic field and holds the potential for erosion control, ornamental purposes, food source, and economic benefits for forest villagers from its fruits. This study aims to determine the chemical components and biological activities of extracts prepared from COPMB using different solvents. RESULTS The present work was designed to define the antioxidant activity [phosphomolybdenum (total antioxidant capacity), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric ion-reducing antioxidant capacity (CUPRAC) and metal chelating activity (MCA)], phytochemical screening analysis, enzyme inhibitor (α-amylase, α-glucosidase and tyrosinase) potential, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) secondary metabolite profiling in different extracts of COPMB. The results of LC-HRMS revealed that fumaric acid was the main phenolic compound in all extracts. Among the extracts, ethyl acetate extract has the highest phytochemical and antioxidant properties [total phenolic content (TPC): 32.5 mg GAE/g, total flavonoid content (TFC): 12.2 mg QE/g, ABTS: 213.0 mg TE/g; CUPRAC: 126.0 mg TE/g, MCA: 145.0 mg EDTA/g; FRAP: 122.8 mg TE/g; TAC: 2.8 mmol TE/g]. Ethyl acetate and methanol extracts are more effective in α-amylase (0.27 ± 0.01 mg/mL; 0.12 ± 0.00 mg/mL), α-glucosidase (0.63 ± 0.02 mg/mL; 0.77 ± 0.02 mg/mL) and tyrosinase (0.03 ± 0.00 mg/mL; 0.03 ± 0.00 mg/mL) enzyme inhibition potentials compared to standard acarbose (0.75 ± 0.02 mg/mL for α-amylase; 1.11 ± 0.03 mg/mL for α-glucosidase) and kojic acid (0.04 ± 0.00 mg/mL). CONCLUSION The findings from this study suggest that COPMB could serve as a valuable source of natural agents for the food and pharmaceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ummuhan Cakmak
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
5
|
Polat DÇ, İlgün S, Karatoprak GŞ, Akkol EK, Capasso R. Phytochemical Profiles, Antioxidant, Cytotoxic, and Anti-Inflammatory Activities of Traditional Medicinal Plants: Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans. Molecules 2022; 27:molecules27238249. [PMID: 36500342 PMCID: PMC9735548 DOI: 10.3390/molecules27238249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans are traditionally used plants grown in Turkey. Methanol extracts were obtained from these plants and pharmacological activity studies and phytochemical analyses were carried out. To evaluate the phytochemical composition, spectrophotometric and chromatographic techniques were used. The extracts were evaluated for antioxidant activity by DPPH●, ABTS●+ radical scavenging, and FRAP assays. The cytotoxic effects of the extracts were investigated on DU145 prostate cancer and A549 lung cancer cell lines. The anti-inflammatory effects of extracts were investigated on the NO amount, TNF-α, IFN-γ, and PGE 2 levels in lipopolysaccharide-stimulated Raw 264.7 cells. The richest extract in terms of phenolic compounds (98.19 ± 1.64 mgGAE/gextract) and total flavonoids (21.85 ± 0.64 mgCA/gextract) was identified as C. pichleri subsp. pichleri methanol extract. According to antioxidant activity determinations, the C. pichleri subsp. pichleri extract was found to be the most active extract. Finally, the C. pichleri subsp. pichleri methanol extract was revealed to be the most effective inhibitor of viability in the cytotoxic activity investigation, and the extract with the best anti-inflammatory action. The findings point to C. pichleri subsp. pichleri as a promising source of bioactive compounds in the transition from natural sources to industrial uses, such as new medications, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Derya Çiçek Polat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-0312-202-3185 (E.K.A.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-0312-202-3185 (E.K.A.)
| |
Collapse
|