1
|
Liu H, Liu X, Liu H, Tang J, He W, Xu T, Cheng B, Shi B, Han J. Bacillus siamensis Improves the Immune Status and Intestinal Health of Weaned Piglets by Improving Their Intestinal Microbiota. Microorganisms 2024; 12:1012. [PMID: 38792841 PMCID: PMC11124100 DOI: 10.3390/microorganisms12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies on the early interference of gut microbiota by Bacillus siamensis (B. siamensis) in weaned piglets are rarely reported, and the present trial is a preliminary study. This experiment was conducted to investigate the effects of B. siamensis supplementation on the growth performance, serum biochemistry, immune response, fecal short-chain fatty acids and microbiota of weaned piglets. Sixty weaned piglets were randomly divided into a control group (CON) and a B. siamensis group (BS), which were fed a basal diet and the basal diet supplemented with 5 × 1010 CFU B. siamensis per kg, respectively. Each group had 3 replicates and 10 piglets per replicate. The trial lasted for 28 days. The results showed that B. siamensis significantly increased the serum growth hormone (GH) and insulin-like growth factor (IGF) in piglets. Compared with the CON group, the levels of serum immunoglobulin and inflammatory factors in the BS group were significantly improved. In addition, the serum concentrations of zonulin and endotoxin (ET) in the BS group were lower. The dietary addition of B. siamensis significantly increased fecal short-chain fatty acid (SCFA) levels in piglets. Notably, B. siamensis improved the microbial composition by increasing beneficial genera, including Weissella, Lachnospiraceae_NK4A136_group and Bifidobacterium, and decreasing pathogenic genera, including Pantoea, Fusobacterium and Gemella, in piglet feces. Correlation analysis showed that the benefits of dietary B. siamensis supplementation were closely related to its improved microbial composition. In summary, the addition of B. siamensis can improve the immunity function, inflammatory response, gut permeability and SCFA levels of weaned piglets, which may be achieved through the improvement of their microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
- National Soybean Engineering Technology Research Center, Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Jiaqi Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Tianqi Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.L.); (X.L.)
| | - Jianchun Han
- National Soybean Engineering Technology Research Center, Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| |
Collapse
|
2
|
Gao F, Zhang W, Cao M, Liu X, Han T, He W, Shi B, Gu Z. Maternal supplementation with konjac glucomannan improves maternal microbiota for healthier offspring during lactation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3736-3748. [PMID: 38234014 DOI: 10.1002/jsfa.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND The maternal diet during gestation and lactation affects the health of the offspring. Konjac glucomannan (KGM) is a significantly functional polysaccharide in food research, possessing both antioxidant and prebiotic properties. However, the mechanisms of how KGM regulates maternal nutrition remain insufficient and limited. This study aimed to investigate maternal supplementation with KGM during late gestation and lactation to benefit both maternal and offspring generations. RESULTS Our findings indicate that KGM improves serum low density lipoprotein cholesterol (LDL-C) and antioxidant capacity. Furthermore, the KGM group displayed a significant increase in the feed intake-related hormones neuropeptide tyrosine (NPY), Ghrelin, and adenosine monophosphate-activated kinase (AMPK) levels. KGM modified the relative abundance of Clostridium, Candidatus Saccharimonas, unclassified Firmicutes, and unclassified Christensenellaceae in sow feces. Acetate, valerate, and isobutyrate were also improved in the feces of sows in the KGM group. These are potential target bacterial genera that may modulate the host's health. Furthermore, Spearman's correlation analysis unveiled significant correlations between the altered bacteria genus and feed intake-related hormones. More importantly, KGM reduced interleukin-6 (IL-6) levels in milk, further improved IL-10 levels, and reduced zonulin levels in the serum of offspring. CONCLUSION In conclusion, maternal dietary supplementation with KGM during late gestation and lactation improves maternal nutritional status by modifying maternal microbial and increasing lactation feed intake, which benefits the anti-inflammatory capacity of the offspring serum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingting Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhigang Gu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Ma S, Li J, Ye H, Huang S, Huang Z, Wu D, Ma K, Xie J, Yin Y, Tan C. Effects of dietary supplementation of different levels of gamma-aminobutyric acid on reproductive performance, glucose intolerance, and placental development of gilts. J Anim Sci 2024; 102:skad405. [PMID: 38133610 PMCID: PMC10781436 DOI: 10.1093/jas/skad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
This study aimed to investigate the effects of dietary gamma-aminobutyric acid (GABA) supplementation on reproductive performance, glucose intolerance, and placental development of gilts during mid-late gestation. Based on the principle of backfat thickness consistency, 124 gilts at 65 d of gestation were assigned to three dietary groups: CON (basic diet, n = 41), LGABA (basic diet supplemented with 0.03% GABA, n = 42), and HGABA (basic diet supplemented with 0.06% GABA, n = 41). The litter performance, glucose tolerance, placental angiogenesis, and nutrients transporters were assessed. The LGABA group improved piglet vitality and placental efficiency and decreased area under the curve of glucose tolerance test compared to the CON group (P < 0.05). Meanwhile, the LGABA group enhanced placental vessel density, platelet endothelial cell adhesion molecule-1 levels and gene expression of fibroblast growth factor 18 (P < 0.05). Furthermore, LGABA showed an uptrend in glucose transporter type 1 mRNA level (P = 0.09). Taken together, this study revealed that the dietary supplementation of 0.03% GABA can improve piglet vitality, glucose intolerance, and placental development of gilts.
Collapse
Affiliation(s)
- Shuo Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinfeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Institute of Subtropical Agriculture, Chinese Academy of Science, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan 410125, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Institute of Subtropical Agriculture, Chinese Academy of Science, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan 410125, China
| | - Chengquan Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
4
|
Liu X, Wei X, Feng Y, Liu H, Tang J, Gao F, Shi B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants (Basel) 2023; 13:22. [PMID: 38275642 PMCID: PMC10812556 DOI: 10.3390/antiox13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
This study investigated the nutritional benefits of complex dietary fiber (beta-glucan and fructo-oligosaccharides, CDF) supplementation in sows and piglets during late pregnancy and lactation. Twenty-four sows were randomly divided into two groups: the control group was fed a basal diet (n = 12), and the experimental group was fed a CDF diet (0.25% CDF replaced the same proportion of corn in the basal diet, n = 12). Dietary treatment was given from day 107 of pregnancy to day 25 of lactation. The results of this experiment showed that CDF increased the average daily feed intake (ADFI) of sows during lactation and the weaning body weight (BW) and average daily gain of piglets. Dietary CDF supplementation improved the antioxidant capacity and immune level of sows and decreased the serum zonulin level. Dietary supplementation with CDF increased the levels of antioxidant activity, immunoglobulin, and anti-inflammatory factor interleukin-10 (IL-10) in milk. Meanwhile, piglets in the CDF group had increased serum antioxidant activity, immunoglobulin, and growth-related hormone levels; decreased malondialdehyde (MDA), interleukin-6 (IL-6), and D-lactic acid (D-LA) levels; and increased fecal short-chain fatty acid content. In addition, the CDF group increased the diversity of microorganisms in sow feces. In conclusion, the supplementation of a diet with CDF in late pregnancy and lactation can alleviate the oxidative stress of sows, improve milk quality, and have significant positive effects on the antioxidant capacity and growth performance of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.L.); (X.W.); (Y.F.); (H.L.); (J.T.); (F.G.)
| |
Collapse
|
5
|
Zhang S. From Challenge to Opportunity: Addressing Oxidative Stress in Animal Husbandry. Antioxidants (Basel) 2023; 12:1543. [PMID: 37627538 PMCID: PMC10451671 DOI: 10.3390/antiox12081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Years of study have explored the issues caused by oxidative stress in livestock and poultry production [...].
Collapse
Affiliation(s)
- Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|