1
|
Zhu Q, Yuan C, Dong X, Wang Y, Li B, Tu B, Chen W, Xu X, Gong W, Xiao W, Ding Y, Hu L, Li W, Lu G. Bile acid metabolomics identifies chenodeoxycholic acid as a therapeutic agent for pancreatic necrosis. Cell Rep Med 2023; 4:101304. [PMID: 38035885 PMCID: PMC10772342 DOI: 10.1016/j.xcrm.2023.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Bile acids are altered and associated with prognosis in patients with acute pancreatitis (AP). Here, we conduct targeted metabolomic analyses to detect bile acids changes in patients during the acute (n = 326) and the recovery (n = 133) phases of AP, as well as in healthy controls (n = 60). Chenodeoxycholic acid (CDCA) decreases in the acute phase, increases in the recovery phase, and is associated with pancreatic necrosis. CDCA and its derivative obeticholic acid exhibit a protective effect against acinar cell injury in vitro and pancreatic necrosis in murine models, and RNA sequencing reveals that the oxidative phosphorylation pathway is mainly involved. Moreover, we find that overexpression of farnesoid X receptor (FXR, CDCA receptor) inhibits pancreatic necrosis, and interfering expression of FXR exhibits an opposite phenotype in mice. Our results possibly suggest that targeting CDCA is a potential strategy for the treatment of acinar cell necrosis in AP, but further verification is needed.
Collapse
Affiliation(s)
- Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xingmeng Xu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Chen M, Zhao Y, Ji H, Li L, Liu H, Wang S, Zhang D, Yin J, Wang J, Zhang X. Chenodeoxycholic Acid Improves Embryo Implantation and Metabolic Health through Modulating Gut Microbiota-Host Metabolites Interaction during Early Pregnancy. Antioxidants (Basel) 2023; 13:8. [PMID: 38275628 PMCID: PMC10812749 DOI: 10.3390/antiox13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Fetus loss in early pregnancy is of major concern to both humans and animals, and this issue is largely influenced by embryo implantation. Chenodeoxycholic acid (CDCA), a primary bile acid, contributes to metabolic improvements and protects against intrahepatic cholestasis of pregnancy. However, the effect of CDCA on embryo implantation during early pregnancy has not been investigated. The present study demonstrated that CDCA administration during early pregnancy improved embryo implantation in sows and rats, thereby improving the pregnancy outcomes of sows. CDCA significantly reduced inflammation, oxidative stress, and insulin resistance. The metabolomics analysis indicated significant differences in the fecal metabolome, especially regarding the level of secondary bile acids, between the control and CDCA-treated sows. CDCA also influenced the serum metabolite profiles in sows, and the serum L-Histidine level was significantly correlated with the abundance of 19 differential fecal metabolites. Importantly, L-Histidine administration improved embryo implantation and metabolic health in rats during early pregnancy. Moreover, CDCA administration during early pregnancy also led to long-term metabolic improvements in sows. Our data indicated that CDCA improved embryo implantation by alleviating inflammation and oxidative stress, improving insulin sensitivity, and modulating the interaction between the gut microbiota and host metabolites. Therefore, CDCA intervention is a potential therapeutic strategy regarding embryo loss during pregnancy.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Ying Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
3
|
Luo X, Zhang T, Xu D, Zhu M, Zhang J, Zhang R, Hu Q, Wang Y, He G, Chen Z, Mei S, Zhou B, Wang K, Chen C, Zhu E, Cheng Z. The effect of feeding fermented distillers' grains diet on the intestinal metabolic profile of Guanling crossbred cattle. Front Vet Sci 2023; 10:1238064. [PMID: 37929280 PMCID: PMC10622970 DOI: 10.3389/fvets.2023.1238064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Fermented distiller's grains (FDG)-based diets are nutritious and can improve the growth and intestinal immunity in livestock. However, there is limited research examining the effect of feeding FDG-based diets on changes in intestinal metabolites and related pathways in livestock. In this study, nine Guanling crossbred cattle (Guizhou Guanling Yellow cattle × Simmental cattle) were selected and randomly divided into a basal diet (BD) group and two experimental groups fed with FDG replacing 15% and 30% of the daily ration concentrates (FDG-Case A and FDG-Case B), respectively, with three cattle in each group. Fresh jejunum (J) and cecum (C) tissues were collected for metabolomic analysis. Differential metabolites and metabolic pathways were explored by means of univariate and multivariate statistical analysis. Compared with the J-BD group, 30 and 100 differential metabolites (VIP > 1, p < 0.05) were obtained in the J-FDG-Case A group and J-FDG-Case B group, respectively, and the J-FDG-Case B vs. J-FDG-Case A comparison revealed 63 significantly differential metabolites, which were mainly divided into superclasses including lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and derivatives. Compared with the C-BD, 3 and 26 differential metabolites (VIP > 1, p < 0.05) were found in the C-FDG-Case A group and C-FDG-Case B group, respectively, and the C-FDG-Case B vs. C-FDG-Case A comparison revealed 21 significantly different metabolites, which were also mainly divided into superclasses including lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and derivatives. A total of 40 metabolic pathways were identified, with a significance threshold set at p < 0.05. Among them, 2, 14, and 18 metabolic pathways were significantly enriched in the J-FDG-Case A vs. J-BD, J-FDG-Case B vs. J-BD, and J-FDG-Case B vs. J-FDG-Case A comparisons, respectively. Meanwhile, 1, 2, and 3 metabolic pathways were obtained in the C-FDG-Case A vs. C-BD, C-FDG-Case B vs. C-BD, and C-FDG-Case B vs. C-FDG-Case A comparisons, respectively. Furthermore, four significant metabolic pathways, namely insulin resistance, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and primary bile acid biosynthesis, were significantly enriched in Guanling crossbred cattle fed FDG diets. These results suggest that feeding FDG diets may promote the growth and intestinal immunity of Guanling crossbred cattle by regulating metabolic patterns of lipid compounds and related metabolic pathways. This study sheds light on the potential metabolic regulatory mechanisms of FDG diets and offers some references for their use in livestock feed.
Collapse
Affiliation(s)
- Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Junjie Zhang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Qian Hu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yongxuan Wang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|