1
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024; 57:e13725. [PMID: 39087342 PMCID: PMC11628753 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Geriatrics, Southwest HospitalThe Third Military Medical University (Army Medical University)ChongqingChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversityJiangsuChina
| | - Hang Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Lin Yan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yifeng Jin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ziyue Wu
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Zeng Q, Xu T, Luo Z, Zhou H, Duan Z, Xiong X, Huang M, Li W. Effect of inflammatory factors on myocardial infarction. BMC Cardiovasc Disord 2024; 24:538. [PMID: 39375629 PMCID: PMC11457337 DOI: 10.1186/s12872-024-04122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Cohort studies have increasingly shown associations between inflammatory markers and myocardial infarction (MI); however, the specific causal relationships between inflammatory markers and the development of MI remain unclear. METHODS AND RESULTS By utilizing publicly accessible genome-wide association studies, we performed a two-sample Mendelian randomization (MR) analysis to explore the causal associations between inflammatory markers and myocardial infarction (MI). A random-effects inverse-variance weighted method was used to calculate effect estimates. The study included a total of 395,795 European participants for MI analysis and various sample sizes for inflammatory factors, ranging from 3,301 to 563,946 participants.Neutrophil count was found to increase the risk of MI (odds ratio [OR] = 1.08; 95% confidence interval [CI], 1.00-1.17; p = 0.04). C-reactive protein levels correlated positively with MI. No associations were observed with IL-1 beta, IL-6, IL-18, procalcitonin, TNF-α, total white cell count, or neutrophil percentage of white cells. Neutrophil count and C-reactive protein were inversely associated with lactate dehydrogenase: neutrophil cell count (OR 0.95; 95% CI, 0.93-0.98; p < 0.01) and C-reactive protein (OR 0.96; 95% CI, 0.92-1.00; p = 0.02). No associations of MI with myoglobin, troponin I, and creatine kinase-MB levels were found. CONCLUSIONS This two-sample MR analysis revealed a causal positive association of MI with neutrophil count, C-reactive protein level, and the myocardial injury marker lactate dehydrogenase. These results indicate that monitoring C-reactive protein and neutrophil counts may be useful in management of MI patients.
Collapse
Affiliation(s)
- Qingyi Zeng
- Affiliated Hospital of Guizhou Medical University, 16 Beijing Road Guiyang, Guiyang, 550000, Guizhou, China
- The Second Affiliated Hospital of Guizhou, University of Chinese Medicine, 83 Feishan Street, Guiyang, 55000, Guizhou, China
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou, University of Chinese Medicine, 83 Feishan Street, Guiyang, 55000, Guizhou, China
| | - Zhenghua Luo
- Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 55000, Guizhou, China
| | - Haiyan Zhou
- Affiliated Hospital of Guizhou Medical University, 16 Beijing Road Guiyang, Guiyang, 550000, Guizhou, China
| | - Zonggang Duan
- Affiliated Hospital of Guizhou Medical University, 16 Beijing Road Guiyang, Guiyang, 550000, Guizhou, China
| | - Xinlin Xiong
- Affiliated Hospital of Guizhou Medical University, 16 Beijing Road Guiyang, Guiyang, 550000, Guizhou, China
| | - Mengjun Huang
- Affiliated Hospital of Guizhou Medical University, 16 Beijing Road Guiyang, Guiyang, 550000, Guizhou, China
| | - Wei Li
- Affiliated Hospital of Guizhou Medical University, 16 Beijing Road Guiyang, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
3
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
5
|
Peters VB, Matheis F, Erdmann I, Nemade HN, Muders D, Toubartz M, Torun M, Mehrkens D, Geißen S, Nettersheim FS, Picard F, Guthoff H, Hof A, Arkenberg P, Arand B, Klinke A, Rudolph V, Hansen HP, Bachurski D, Adam M, Hoyer FF, Winkels H, Baldus S, Mollenhauer M. Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction. Front Immunol 2024; 15:1360700. [PMID: 38736886 PMCID: PMC11082299 DOI: 10.3389/fimmu.2024.1360700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.
Collapse
Affiliation(s)
- Vera B.M. Peters
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friederike Matheis
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Immanuel Erdmann
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Harshal N. Nemade
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Muders
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Toubartz
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Merve Torun
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Picard
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Per Arkenberg
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Birgit Arand
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Hinrich Peter Hansen
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Zheng R, Moynahan K, Georgomanolis T, Pavlenko E, Geissen S, Mizi A, Grimm S, Nemade H, Rehimi R, Bastigkeit J, Lackmann JW, Adam M, Rada-Iglesias A, Nuernberg P, Klinke A, Poepsel S, Baldus S, Papantonis A, Kargapolova Y. Remodeling of the endothelial cell transcriptional program via paracrine and DNA-binding activities of MPO. iScience 2024; 27:108898. [PMID: 38322992 PMCID: PMC10844825 DOI: 10.1016/j.isci.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Myeloperoxidase (MPO) is an enzyme that functions in host defense. MPO is released into the vascular lumen by neutrophils during inflammation and may adhere and subsequently penetrate endothelial cells (ECs) coating vascular walls. We show that MPO enters the nucleus of ECs and binds chromatin independently of its enzymatic activity. MPO drives chromatin decondensation at its binding sites and enhances condensation at neighboring regions. It binds loci relevant for endothelial-to-mesenchymal transition (EndMT) and affects the migratory potential of ECs. Finally, MPO interacts with the RNA-binding factor ILF3 thereby affecting its relative abundance between cytoplasm and nucleus. This interaction leads to change in stability of ILF3-bound transcripts. MPO-knockout mice exhibit reduced number of ECs at scar sites following myocardial infarction, indicating reduced neovascularization. In summary, we describe a non-enzymatic role for MPO in coordinating EndMT and controlling the fate of endothelial cells through direct chromatin binding and association with co-factors.
Collapse
Affiliation(s)
- Ruiyuan Zheng
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Kyle Moynahan
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Theodoros Georgomanolis
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Egor Pavlenko
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Simon Geissen
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Simon Grimm
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Harshal Nemade
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jil Bastigkeit
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Jan-Wilm Lackmann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cluster of Excellence on Cellular Stress Responses in Age-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Matti Adam
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, 39011 Santander, Spain
| | - Peter Nuernberg
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Anna Klinke
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stephan Baldus
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Yulia Kargapolova
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| |
Collapse
|
7
|
Lund LH, Lam CS, Pizzato PE, Gabrielsen A, Michaëlsson E, Nelander K, Ericsson H, Holden J, Folkvaljon F, Mattsson A, Collén A, Aurell M, Whatling C, Baldus S, Drelich G, Goudev A, Merkely B, Bergh N, Shah SJ. Rationale and design of ENDEAVOR: A sequential phase 2b-3 randomized clinical trial to evaluate the effect of myeloperoxidase inhibition on symptoms and exercise capacity in heart failure with preserved or mildly reduced ejection fraction. Eur J Heart Fail 2023; 25:1696-1707. [PMID: 37470101 PMCID: PMC10592288 DOI: 10.1002/ejhf.2977] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS Mitiperstat (formerly AZD4831) is a novel selective myeloperoxidase inhibitor. Currently, no effective therapies target comorbidity-induced systemic inflammation, which may be a key mechanism underlying heart failure with preserved or mildly reduced ejection fraction (HFpEF/HFmrEF). Circulating neutrophils secrete myeloperoxidase, causing oxidative stress, microvascular endothelial dysfunction, interstitial fibrosis, cardiomyocyte remodelling and diastolic dysfunction. Mitiperstat may therefore improve function of the heart and other organs, and ameliorate heart failure symptoms and exercise intolerance. ENDEAVOR is a combined, seamless phase 2b-3 study of the efficacy and safety of mitiperstat in patients with HFpEF/HFmrEF. METHODS In phase 2b, approximately 660 patients with heart failure and ejection fraction >40% are being randomized 1:1:1 to mitiperstat 2.5 mg, 5 mg or placebo for 48 weeks. Eligible patients have baseline 6-min walk distance (6MWD) of 30-400 m with a <50 m difference between screening and randomization and Kansas City Cardiomyopathy Questionnaire total symptom score (KCCQ-TSS) ≤90 points at screening and randomization. The dual primary endpoints are change from baseline to week 16 in 6MWD and KCCQ-TSS. The sample size provides 85% power to detect placebo-adjusted improvements of 21 m in 6MWD and 6.0 points in KCCQ-TSS at overall two-sided alpha of 0.05. Safety is monitored throughout treatment, with a focus on maculopapular rash. In phase 3 of ENDEAVOR, approximately 820 patients will be randomized 1:1 to mitiperstat or placebo. CONCLUSION ENDEAVOR is the first phase 2b-3 study to evaluate whether myeloperoxidase inhibition can improve symptoms and exercise capacity in patients with HFpEF/HFmrEF.
Collapse
Affiliation(s)
- Lars H. Lund
- Department of Medicine, Karolinska Institute, and Heart, Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Carolyn S.P. Lam
- National Heart Centre Singapore and Duke National University of Singapore, Singapore
| | - Patricia E. Pizzato
- Early Clinical Development, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Gabrielsen
- Early Clinical Development, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Michaëlsson
- Early Clinical Development, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karin Nelander
- Early Biometrics and Statistical Innovation, Data Science and AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hans Ericsson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Julie Holden
- Patient Safety, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Folke Folkvaljon
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Mattsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism – Biometrics, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Aurell
- Early Clinical Development, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Whatling
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephan Baldus
- Department of Internal Medicine and Cardiology, University Hospital Cologne, Cologne, Germany
| | | | - Assen Goudev
- Clinic of Cardiology, Tsaritsa Joanna University Hospital – ISUL, Sofia, Bulgaria
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Niklas Bergh
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|