1
|
Doro L, Peana AT, Migheli R, Capobianco G, Criscione M, Montella A, Campesi I. Effect of (R)-(-)-Linalool on endothelial damage: Sex differences. Biochem Biophys Rep 2024; 40:101846. [PMID: 39483177 PMCID: PMC11525626 DOI: 10.1016/j.bbrep.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Oxidative stress and inflammation are responsible for endothelial damage displaying many sex differences. Lipopolysaccharide (LPS) is a pathogenic stimulus that can trigger inflammation, contributing to endothelial dysfunction. Given the scientific evidence on the effectiveness of herbal extracts in managing endothelial dysfunction, we considered the (R)-(-)-Linalool (LIN), an aromatic monoterpene alcohol, as a bioactive phytochemical compound that could prevent and improve endothelial injury. In this study, we evaluated the effect of the LIN on LPS-induced damage in female and male human umbilical vein endothelial cells (FHUVECs and MHUVECs), measuring cell viability, cytokines release (IL-6 and TNF-α), malondialdehyde (MDA), and nitrites. LPS significantly reduced viability both in MHUVECs and FHUVECs. Moreover, LPS increased the IL-6, TNF-α, and MDA level only in FHUVECs if compared to basal value; despite that, LPS reduced nitrites only in MHUVECs. LIN alone did not affect the parameters measured except for an increase in nitrites in FHUVECs. Nevertheless, LIN reduced damage and restored endothelium viability reduced by LPS without a clear sex difference. Under LPS, LIN inhibited IL-6 release and reduced MDA levels only in FHUVECs. The present data confirm the existence of sex differences in the behavior of HUVECs under LPS conditions. The administration of LIN seems to have a more evident effect on FHUVECs after damage induced by LPS. These LIN effects are important to conduct further well-designed studies on the sex-specific use of this compound on vascular endothelial injury.
Collapse
Affiliation(s)
- Laura Doro
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Alessandra T. Peana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
- Gynecologic and Obstetric Clinic, AOU, Viale San Pietro 12, 07100, Sassari, Italy
| | - Massimo Criscione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| |
Collapse
|
2
|
Struck EC, Belova T, Hsieh PH, Odeberg JO, Kuijjer ML, Dusart PJ, Butler LM. Global Transcriptome Analysis Reveals Distinct Phases of the Endothelial Response to TNF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:117-129. [PMID: 38019121 PMCID: PMC10733583 DOI: 10.4049/jimmunol.2300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Eike C. Struck
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Tatiana Belova
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Ping-Han Hsieh
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Jacob O. Odeberg
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- The University Hospital of North Norway, Tromsø, Norway
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip J. Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lynn M. Butler
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Franconi F, Capobianco G, Diana G, Lodde V, De Donno A, Idda ML, Montella A, Campesi I. Sex Influence on Autophagy Markers and miRNAs in Basal and Angiotensin II-Treated Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2023; 24:14929. [PMID: 37834376 PMCID: PMC10573886 DOI: 10.3390/ijms241914929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular diseases (CVD) display many sex and gender differences, and endothelial dysfunction, angiotensin II (Ang II), and autophagy represent key factors in the autophagic process Therefore, we studied whether Ang II modulates the mentioned processes in a sex-specific way in HUVECs obtained from healthy male and female newborns. In basal HUVECs, the Parkin gene and protein were higher in FHUVECs than in MHUVECs, while the Beclin-1 protein was more expressed in MHUVECs, and no other significant differences were detected. Ang II significantly increases LAMP-1 and p62 protein expression and decreases the expression of Parkin protein in comparison to basal in MHUVECs. In FHUVECs, Ang II significantly increases the expression of Beclin-1 gene and protein, and Parkin gene. The LC3 II/I ratio and LAMP-1 protein were significantly higher in MHUVECs than in FHUVECs, while Parkin protein was significantly more expressed in Ang II-treated FHUVECs than in male cells. Ang II affects the single miRNA levels: miR-126-3p and miR-133a-3p are downregulated and upregulated in MHUVECs and FHUVECs, respectively. MiR-223 is downregulated in MHUVEC and FHUVECs. Finally, miR-29b-3p and miR-133b are not affected by Ang II. Ang II effects and the relationship between miRNAs and organelles-specific autophagy is sex-dependent in HUVECs. This could lead to a better understanding of the mechanisms underlying sex differences in endothelial dysfunction, providing useful indications for innovative biomarkers and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Giuseppe Diana
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Alberto De Donno
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Maria Laura Idda
- Institute of Genetics and Biomedical Research, National Research Council, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Ilaria Campesi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| |
Collapse
|