1
|
Monterisi S, Garcia-Perez P, Buffagni V, Zuluaga MYA, Ciriello M, Formisano L, El-Nakhel C, Cardarelli M, Colla G, Rouphael Y, Cristofano F, Cesco S, Lucini L, Pii Y. Unravelling the biostimulant activity of a protein hydrolysate in lettuce plants under optimal and low N availability: a multi-omics approach. PHYSIOLOGIA PLANTARUM 2024; 176:e14357. [PMID: 38775128 DOI: 10.1111/ppl.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 08/24/2024]
Abstract
The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.
Collapse
Affiliation(s)
- Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| |
Collapse
|
2
|
Tamburino R, Docimo T, Sannino L, Gualtieri L, Palomba F, Valletta A, Ruocco M, Scotti N. Enzyme-Based Biostimulants Influence Physiological and Biochemical Responses of Lactuca sativa L. Biomolecules 2023; 13:1765. [PMID: 38136636 PMCID: PMC10742310 DOI: 10.3390/biom13121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Biostimulants (BSs) are natural materials (i.e., organic or inorganic compounds, and/or microorganisms) having beneficial effects on plant growth and productivity, and able to improve resilience/tolerance to biotic and abiotic stresses. Therefore, they represent an innovative alternative to the phyto- and agrochemicals, being environmentally friendly and a valuable tool to cope with extreme climate conditions. The objective of this study was to investigate the effects of several biomolecules (i.e., Xylanase, β-Glucosidase, Chitinase, and Tramesan), alone or in combinations, on lettuce plant growth and quality. With this aim, the influence of these biomolecules on biomass, pigment content, and antioxidant properties in treated plants were investigated. Our results showed that Xylanase and, to a lesser extent, β-Glucosidase, have potentially biostimulant activity for lettuce cultivation, positively influencing carotenoids, total polyphenols, and ascorbic acid contents; similar effects were found with respect to antioxidative properties. Furthermore, the effect of the more promising molecules (Xylanase and β-Glucosidase) was also evaluated in kiwifruit cultured cells to test their putative role as sustainable input for plant cell biofactories. The absence of phytotoxic effects of both molecules at low doses (0.1 and 0.01 µM), and the significantly enhanced cell biomass growth, indicates a positive impact on kiwifruit cells.
Collapse
Affiliation(s)
- Rachele Tamburino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Teresa Docimo
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Lorenza Sannino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Francesca Palomba
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Nunzia Scotti
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| |
Collapse
|
3
|
Cristofano F, El-Nakhel C, Colla G, Cardarelli M, Pii Y, Lucini L, Rouphael Y. Modulation of Morpho-Physiological and Metabolic Profiles of Lettuce Subjected to Salt Stress and Treated with Two Vegetal-Derived Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:709. [PMID: 36840057 PMCID: PMC9964113 DOI: 10.3390/plants12040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), β-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable.
Collapse
Affiliation(s)
- Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, 39100 Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|