1
|
Jagielska A, Sałaciak K, Pytka K. Beyond the blur: Scopolamine's utility and limits in modeling cognitive disorders across sexes - Narrative review. Ageing Res Rev 2024; 104:102635. [PMID: 39653154 DOI: 10.1016/j.arr.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Scopolamine, widely regarded as the gold standard in preclinical studies of memory impairments, acts as a non-selective antagonist of central and peripheral muscarinic receptors. While its application in modeling dementia primarily involves antagonism at the M1 receptor, its non-selective peripheral actions may introduce adverse effects that influence behavioral test outcomes. This review analyzes preclinical findings to consolidate knowledge on scopolamine's use and elucidate potential mechanisms responsible for its amnestic effects. We focused on recognition, spatial, and emotional memory processes, alongside executive functions such as attention, cognitive flexibility, and working memory. The cognitive effects of scopolamine are highly dose-dependent, influenced by factors such as species, age, and sex of subjects. Notably, scopolamine rapidly induces observable memory impairments across species, from fish to rodents and primates, often with deficits that can persist for days. However, the compound's broad action on muscarinic receptors and its peripheral side effects, including pupil dilation and reduced salivation, complicates result interpretation, particularly in tasks requiring visual discrimination or food intake. The review also highlights scopolamine's translational value in modeling dementia and Alzheimer's disease, emphasizing the importance of considering individual factors and task-specific designs. Despite its widespread use, scopolamine's limited specificity for cholinergic dysfunction and inability to fully mimic the complex pathophysiology of cognitive disorders like Alzheimer's and Parkinson's disease point to the need for complementary models. This review aims to guide researchers in using scopolamine for modeling cognitive impairments, ensuring attention to factors impacting experimental outcomes.
Collapse
Affiliation(s)
- Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Sharma P, Kumari P, Sharma M, Sharma R, Paliwal A, Srivastava S, Ashique S, Bhowmick M, Adnan M, Mir RH. Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: behavioural, biochemical and histopathological evidence. J Microencapsul 2024; 41:403-418. [PMID: 39007845 DOI: 10.1080/02652048.2024.2373715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE The main purpose of the present study was to evaluate the therapeutic efficacy of Aloe vera-coated curcumin encapsulated nanoparticles in mitigating Alzheimer's disease progression in mice, by examining behavioural changes, biochemical markers, and histopathological alterations, thus elucidating its potential as a treatment strategy. METHODS The green synthesis method was used to synthesise this nanoformulation, which was then characterised using a variety of techniques, including percentage encapsulation efficacy, UV-visible spectroscopy, DLS, FT-IR, FESEM, and EDX. Several in-vivo assessments, including behavioural evaluations, dose optimisation studies, oxidative stress marker estimation, and histological studies, were conducted to determine the potential therapeutic impact of nanoformulation on the Alzheimer-induced mice model. RESULTS The synthesised nanoparticles show a mean diameter of 76.12 nm ±1.23, a PDI of 0.313 ± 0.02, a zeta potential of 6.27 ± 0.65 mV, and the percentage encapsulation efficiency between 90% and 95% indicating good stability of synthesised nanoformulation. With the help of Morris water maze, Y-maze, and novel object recognition assay, the learning capacity and memory were assessed, and the results show that the synthesised nanoformulation significantly decreased the transfer latency to reach baited arm or to the hidden platform within 7 days. CONCLUSION The formulation demonstrated significant biochemical benefits and remarkable cognitive advantages, establishing it as a prospective therapeutic intervention option that is both safe and effective.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Pooja Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Mansi Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Reyaz Hassan Mir
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
3
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
4
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
5
|
Sahu PN, Sen A. Preventing Cancer by Inhibiting Ornithine Decarboxylase: A Comparative Perspective on Synthetic vs. Natural Drugs. Chem Biodivers 2024; 21:e202302067. [PMID: 38404009 DOI: 10.1002/cbdv.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
This perspective delves into the investigation of synthetic and naturally occurring inhibitors, their patterns of inhibition, and the effectiveness of newly utilized natural compounds as inhibitors targeting the Ornithine decarboxylase enzyme. This enzyme is known to target the MYC oncogene, thereby establishing a connection between polyamine metabolism and oncogenesis in both normal and cancerous cells. ODC activation and heightened polyamine activity are associated with tumor development in numerous cancers and fluctuations in ODC protein levels exert a profound influence on cellular activity for inhibition or suppressing tumor cells. This perspective outlines efforts to develop novel drugs, evaluate natural compounds, and identify promising inhibitors to address gaps in cancer prevention, highlighting the potential of newly designed synthetic moieties and natural flavonoids as alternatives. It also discusses natural compounds with potential as enhanced inhibitors.
Collapse
Affiliation(s)
- Preeti Nanda Sahu
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| | - Anik Sen
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| |
Collapse
|
6
|
Ding J, Huang L, Yang J, Qi L, Zhu C, Lin S. Dual Action of Reduced Allergenicity and Improved Memory of Instant Soybean Powder Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18815-18828. [PMID: 37991338 DOI: 10.1021/acs.jafc.3c06490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soy allergens are susceptible to inducing allergic reactions in infants and young animals, which have an impact on the effective daily utilization of proteins. In this study, we used Alcalase-hydrolyzed instant soybean powder (ISP) to clarify the sensitization changes of instant soybean powder hydrolysates (ISPH), and we explored the assisted memory-enhancing effects. BALB/c mice in the ISPH group showed significant improvement in the allergy symptoms, with their allergy symptom scores decreasing to (1.57 ± 0.53) and their specific serum IgE and IgG1 binding capacity decreasing by 28.00 and 25.73% (P < 0.05), which suppressed the mast cell degranulation rate. Meanwhile, the plasma HIS and IL-4 levels decreased by 12.59 and 25.32%, and the plasma INF-γ and IL- 10 levels increased by 30.64 and 27.79%, which obviously regulated the imbalance of Th1/Th2 cells and attenuated the tissue damage (P < 0.05). Furthermore, ISPH improved behavioral characteristics, increased cholinergic system activity, reduced neuronal cell damage or apoptosis, and increased the number of Nissl bodies to help improve memory in Kunming mice (P < 0.05). In general, alcalase-hydrolyzed ISP had the dual effects of reducing allergenicity and aiding in memory improvement.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Luyue Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Jingqi Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|