1
|
Jamshidi-Kia F, Saeidi K, Lorigooini Z, Samani BH. Efficacy of foliar application of Chlorella vulgaris extract on chemical composition and biological activities of the essential oil of spearmint ( Mentha spicata L.). Heliyon 2024; 10:e40531. [PMID: 39660204 PMCID: PMC11629182 DOI: 10.1016/j.heliyon.2024.e40531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
The microalgal have an essential role in agriculture, where they are used as biofertilizers. This study aimed to determine the effect of C. vulgaris extract on the chemical composition and biological activities of the Essential Oil (EO) of Mentha spicata. The extract of C. vulgaris was prepared and applied at three different concentrations (50, 75, and 100 %). The EOs of M. spicata were analyzed by gas chromatography-mass spectrometry (GC-MS). The DPPH radical scavenging capability and Ferric Reducing Antioxidant Power (FRAP) techniques were used to assess the antioxidant activity of EOs. The antimicrobial activity of EO was evaluated using the microdilution method against Staphylococcus aureus. The results of GC-MS analysis of EOs identified 46 components, with Carvone (77.5-65.4 %), Limonene (10.31-6.9 %), β-elemene (1.56-0.98 %), and Caryophyllene (10.92-4.77 %) being the predominant constituents. From the highest concentration ranged from 100 % C. vulgaris extract to control respectively, yield and EO content ranged from 171.24 to 131.74 g/m2 and 0.34 to 0.18 %, respectively; Antioxidant activity by DPPH and FRAP methods varied from 1.56 to 4.45 mg/mL, and 405.63 to 68.68 μMFe2+/g, respectively; the Minimum Inhibitory Concentrations (MIC) ranged from 2.4 to 9.6 mg/mL in various treatments. The results indicated that the C. vulgaris extract significantly increased the yield, EO%, Carvone, Limonene, and antioxidant and antibacterial activities compared to the control. The extract of C. vulgaris showed promise as a biofertilizer to enhance the yield, chemical composition, and biological activities of M. spicata.
Collapse
Affiliation(s)
- Fatemeh Jamshidi-Kia
- Department of Horticulture Science, Faculty of Agriculture, Shahrekord University, Iran
| | - Keramatolah Saeidi
- Department of Horticulture Science, Faculty of Agriculture, Shahrekord University, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
2
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
3
|
Cheng J, Kandula N, Cortes VE, Choi H, Singh P, Cui L. Pea protein isolate-based active films for salmon preservation: The role of different essential oils in film properties, antioxidant, and antibacterial activities. Curr Res Food Sci 2024; 9:100936. [PMID: 39697466 PMCID: PMC11652925 DOI: 10.1016/j.crfs.2024.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
To improve the packaging properties of pea protein isolate (PPI) films, 2 wt% of essential oil (EO) from garlic, ginger, or cinnamon was individually incorporated into the films. The film properties were evaluated after the addition of EOs. The resulting PPI active films were applied to salmon to explore their efficacy in a real food system. The results indicated that the moisture content (MC), total soluble matter (TSM), water vapor permeability (WVP), water contact angle (WCA), tensile strength (TS), and elongation at break (EAB) of PPI film decreased after adding EOs, with the extent of the decrease varying based on the type of oil. SEM images revealed that the distribution of EOs within the film matrix differed: garlic EO was mainly distributed within the internal structure, while ginger and cinnamon EOs were primarily on the surface. FTIR analysis confirmed the interactions between PPI and EOs. When applied to salmon, garlic EO and ginger EO promoted lipid oxidation, whereas cinnamon EO significantly delayed it. Although PPI-based active films containing garlic or cinnamon EOs showed remarkable antibacterial activity in vitro, they did not inhibit bacterial growth in salmon. Additionally, EOs in active films may notably alter the color and sensory properties of salmon, potentially influencing consumer acceptance. Our findings demonstrated that the EO type is a key factor in influencing the properties of edible films. More importantly, the effectiveness of active films is closely related to the specific food system in which they are applied.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Nethraja Kandula
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Victoria Eugenia Cortes
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Hyuk Choi
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Prashant Singh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Leqi Cui
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
4
|
Shah M, Shahab M, Ullah S, Bibi S, Rahman NU, Jamil J, Arafat Y, Al-Harrasi A, Murad W, Shao H. Exploring the aroma profile and biomedical applications of Scutellaria nuristanica Rech. F.: A new insight as a natural remedy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155928. [PMID: 39126924 DOI: 10.1016/j.phymed.2024.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; Department of Botany, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan; Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Muhammad Shahab
- Department of Botany, University of Malakand Chakdara, Chakdara 18800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan; Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Najeeb Ur Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Johar Jamil
- Department of Microbiology, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan
| | - Yasir Arafat
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Bar S, Kara M. Linalool exerts antioxidant activity in a rat model of diabetes by increasing catalase activity without antihyperglycemic effect. Exp Ther Med 2024; 28:359. [PMID: 39071903 PMCID: PMC11273359 DOI: 10.3892/etm.2024.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent metabolic disorder often accompanied by oxidative stress, which contributes to various diabetic complications. Investigating the antioxidant activity of linalool (LIN) is crucial as it may offer a natural therapeutic approach to mitigate oxidative damage in DM. The aim of the present study was to investigate the antioxidant activity of LIN in a DM rat model. A total of 40 male Wistar albino rats (age, 8 weeks; weight, 250-300 g) were used. CONTROL and DM groups were administered physiological saline solution by oral gavage for 21 days. In rats in the DM + LIN and LIN groups, 100 mg/kg LIN was administered intragastrically after streptozotocin injection (n=10 per group). In the first (48 h after STZ injection), second (1 week later), third (2 weeks later), and fourth (3 weeks later) blood glucose measurements, a statistically significant increase was found in the blood glucose values of the DM and DM + LIN groups compared with those of the CONTROL group. During the 21-day experimental period, there was no reduction in blood glucose levels of the DM + LIN group. Consequently, no discernible anti-hyperglycemic effect of LIN was observed. Catalase enzyme activity, superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) levels and glutathione (GSH) levels were measured spectrophotometrically. All assays were conducted according to the protocols provided in the respective kits. The results were analyzed to assess the oxidative status and antioxidant capacity in the experimental groups. Catalase (CAT) activity was decreased in the DM group compared with that in the CONTROL group in both the serum and liver. However, LIN administration restored CAT activity in the DM + LIN group to the level of the CONTROL group. In the liver, the DM + LIN-treated group showed a notable reduction in malondialdehyde (MDA) levels compared with those in the DM group. In conclusion, the present results suggest that the antioxidant properties of LIN may have a regulatory effect on the oxidative status in diabetes-affected systems, potentially offering therapeutic benefits in managing oxidative stress associated with diabetes.
Collapse
Affiliation(s)
- Sezer Bar
- Department of Medical Biochemistry, Medicine Faculty of Karabük University, 78000 Karabük, Turkey
| | - Mehmet Kara
- Department of Medical Biochemistry, Medicine Faculty of Karabük University, 78000 Karabük, Turkey
| |
Collapse
|
6
|
Mansinhos I, Gonçalves S, Romano A. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1370810. [PMID: 39049861 PMCID: PMC11266143 DOI: 10.3389/fpls.2024.1370810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
The interest in medicinal and aromatic plants (MAPs) has increased significantly in recent years, driven by the growing demand for natural products. MAPs are a valuable source of secondary metabolites, which renders them useful to a number of industries, including cosmetics, pharmaceuticals, and food. The Lamiaceae family includes economically important MAPs that produce valuable secondary metabolites such as essential oils (EOs) and phenolic compounds (PCs). The quantity and quality of these secondary metabolites are affected by abiotic stress factors. In a climate change scenario, the Lamiaceae is one of the most affected families, especially due to its wide distribution in the Mediterranean region. In the present study, the most common climate-related environmental stress factors, namely, drought, salinity, temperature, light, and heavy metals, were reviewed and discussed in order to assess their impact on the chemical profiles of EOs and PCs, as well as on the biological properties (antioxidant, antibacterial, antimelanogenic, pest-repellent, and UV-protective) of Lamiaceae species. It can be posited that these stresses typically act as a catalyst for the secondary metabolism of these plants, resulting in increased production of EO compounds (e.g., 1,8-cineole, linalool, camphor, borneol, and limonene) and PCs (e.g., rosmarinic, caffeic, and salvianolic acids) and subsequent enhancement of their biological activities. In view of the industrial applications of these bioactive compounds, it is of interest to explore the changes in secondary metabolism induced by environmental factors as it is possible to increase the accumulation of valuable secondary metabolites.
Collapse
Affiliation(s)
| | - Sandra Gonçalves
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
7
|
Chen Y, Wang T, Liang H, Ma D, Zhan R, Yang J, Yang P. Functional Characterization and Catalytic Activity Improvement of Borneol Acetyltransferase from Wurfbainia longiligularis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13250-13261. [PMID: 38813660 DOI: 10.1021/acs.jafc.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In plant secondary metabolite biosynthesis, acylation is a diverse physiological process, with BAHD acyltransferases playing an essential role. Borneol acetyltransferase (BAT) is an alcohol acetyltransferase, which catalyzes borneol and acetyl-CoA to synthesize bornyl acetate (BA). However, the enzymes involved in the biosynthesis of BA have so far only been characterized in Wurfbainia villosa, the studies on the WvBATs have only been conducted in vitro, and the catalytic activity was relatively low. In this research, three genes (WlBAT1, WlBAT2, and WlBAT3) have been identified to encode BATs that are capable of acetylating borneol to synthesize BA in vitro. We also determined that WlBAT1 has the highest catalytic efficiency for borneol-type substrates, including (+)-borneol, (-)-borneol, and isoborneol. Furthermore, we found that BATs could catalyze a wide range of substrate types in vitro, but in vivo, they exclusively catalyzed borneol-type substrates. Through molecular simulations and site-directed mutagenesis, it was revealed that residues D32, N36, H168, N297, N355, and H384 are crucial for the catalytic activity of WlBAT1, while the R382I-D385R double mutant of WlBAT1 exhibited an increasing acylation efficiency for borneol-type substrates in vitro and in vivo. These findings offer key genetic elements for the metabolic engineering of plants and synthetic biology to produce BA.
Collapse
Affiliation(s)
- Yuanxia Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tiantian Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huilin Liang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dongming Ma
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinfen Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peng Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
8
|
Zeremski T, Šovljanski O, Vukić V, Lončar B, Rat M, Perković Vukčević N, Aćimović M, Pezo L. Combination of Chromatographic Analysis and Chemometric Methods with Bioactivity Evaluation of the Antibacterial Properties of Helichrysum italicum Essential Oil. Antibiotics (Basel) 2024; 13:499. [PMID: 38927166 PMCID: PMC11201240 DOI: 10.3390/antibiotics13060499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Helichrysum italicum (immortelle) essential oil is one of the most popular essential oils worldwide and it has many beneficial properties, including antimicrobial. However, in this plant, the chemical diversity of the essential oil is very pronounced. The aim of this work was to process the GC-MS results of four samples of H. italicum essential oil of Serbian origin by chemometric tools, and evaluate the antimicrobial activity in vitro and in silico. Overall, 47 compounds were identified, the most abundant were γ-curcumene, α-pinene, and ar-curcumene, followed by α-ylangene, neryl acetate, trans-caryophyllene, italicene, α-selinene, limonene, and italidiones. Although the four samples of H. italicum essential oil used in this study were obtained from different producers in Serbia, they belong to the type of essential oil rich in sesquiterpenes (γ-curcumene and ar-curcumene chemotype). In vitro antimicrobial potential showed that five were sensitive among ten strains of tested microorganisms: Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Saccharomyces cerevisiae, and Candida albicans. Therefore, these microorganism models were used further for in silico molecular docking through the mechanism of ATP-ase inhibitory activity. Results showed that among all compounds from H. italicum essential oil, neryl acetate has the highest predicted binding energy. Artificial neural network modeling (ANN) showed that two major compounds γ-curcumene and α-pinene, as well as minor compounds such as trans-β-ocimene, terpinolene, terpinene-4-ol, isoitalicene, italicene, cis-α-bergamotene, trans-α-bergamotene, italidiones, trans-β-farnesene, γ-selinene, β-selinene, α-selinene, and guaiol are responsible for the antimicrobial activity of H. italicum essential oil. The results of this study indicate that H. italicum essential oil samples rich in γ-curcumene, α-pinene, and ar-curcumene cultivated in Serbia (Balkan) have antimicrobial potential both in vitro and in silico. In addition, according to ANN modeling, the proportion of neryl acetate and other compounds detected in these samples has the potential to exhibit antimicrobial activity.
Collapse
Affiliation(s)
- Tijana Zeremski
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (T.Z.); (M.A.)
| | - Olja Šovljanski
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia; (O.Š.); (V.V.); (B.L.)
| | - Vladimir Vukić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia; (O.Š.); (V.V.); (B.L.)
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia; (O.Š.); (V.V.); (B.L.)
| | - Milica Rat
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataša Perković Vukčević
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia;
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Milica Aćimović
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (T.Z.); (M.A.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| |
Collapse
|
9
|
Assaggaf H, Jeddi M, Mrabti HN, Ez-Zoubi A, Qasem A, Attar A, Goh BH, Tan SL, Bouyahya A, Goh KW, Hachlafi NE. Design of three-component essential oil extract mixture from Cymbopogon flexuosus, Carum carvi, and Acorus calamus with enhanced antioxidant activity. Sci Rep 2024; 14:9195. [PMID: 38649707 PMCID: PMC11035653 DOI: 10.1038/s41598-024-59708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, β-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco
| | - Hanae Naceiri Mrabti
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, 30000, Fez, Morocco
| | - Amine Ez-Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sang Loon Tan
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, BP 1014, Rabat, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco
| |
Collapse
|
10
|
Suflet DM, Constantin M, Pelin IM, Popescu I, Rimbu CM, Horhogea CE, Fundueanu G. Chitosan-Oxidized Pullulan Hydrogels Loaded with Essential Clove Oil: Synthesis, Characterization, Antioxidant and Antimicrobial Properties. Gels 2024; 10:227. [PMID: 38667646 PMCID: PMC11049474 DOI: 10.3390/gels10040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Emulsion hydrogels are promising materials for encapsulating and stabilizing high amounts of hydrophobic essential oils in hydrophilic matrices. In this work, clove oil-loaded hydrogels (CS/OP-C) are synthesized by combining covalent and physical cross-linking approaches. First, clove oil (CO) was emulsified and stabilized in a chitosan (CS) solution, which was further hardened by Schiff base covalent cross-linking with oxidized pullulan (OP). Second, the hydrogels were subjected to freeze-thaw cycles and, as a result, the clove oil was stabilized in physically cross-linked polymeric walls. Moreover, due to cryogelation, the obtained hydrogels exhibited sponge-like porous interconnected morphology (160-250 µm). By varying the clove oil content in the starting emulsion and the degree of cross-linking, the hydrogels displayed a high water retention capacity (swelling ratios between 1300 and 2000%), excellent elastic properties with fast shape recovery (20 s) after 70% compression, and controlled in vitro clove oil release in simulated skin conditions for 360 h. Furthermore, the prepared clove oil-loaded hydrogels had a strong scavenging activity of 83% and antibacterial and antifungal properties, showing a bacteriostatic effect after 48 and 72 h against S. aureus and E. coli. Our results recommend the new clove oil-embedded emulsion hydrogels as promising future materials for application as wound dressings.
Collapse
Affiliation(s)
- Dana Mihaela Suflet
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Cristina M. Rimbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley 8, 700489 Iasi, Romania; (C.M.R.); (C.E.H.)
| | - Cristina Elena Horhogea
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley 8, 700489 Iasi, Romania; (C.M.R.); (C.E.H.)
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| |
Collapse
|
11
|
Bhalla P, Chauhan K, Chitme HR, Varshney VK. Phytochemistry and Therapeutic Potential of Cupressus torulosa Needles Essential Oil from India. Chem Biodivers 2024; 21:e202301259. [PMID: 38157454 DOI: 10.1002/cbdv.202301259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Cupressus torulosa is an evergreen tree with a wide distribution in north-western Himalayan region of India. Its needles have long been used in traditional medicine for anti-inflammatory, antimicrobial, and wound-healing properties. This study aimed to scientifically validate the traditional claim of the needles to treat inflammation by evaluating the chemical composition, antioxidant potential, and anti-inflammatory activity of the essential oil extracted from the needles (CTEO) using hydro-distillation. Qualitative and quantitative chemical composition of the CTEO was determined with the aid of GC-MS and GC-FID techniques. The major constituents of the CTEO were terpinen-4-ol (393.8±12.5 μg/mg), totarol (55.0±17.2 μg/mg), and sabinene (43.7±2.8 μg/mg). CTEO exhibited significant antioxidant activity when evaluated using DPPH free radical scavenging and reducing power assays. Furthermore, the CTEO demonstrated good anti-inflammatory behavior in in vitro egg albumin denaturation assay, with an IC50 of 27.32 μg/mL. In vivo tests using carrageenan-induced paw edema and xylene-induced ear edema in rats showed significant effects at doses of 30 mg/kg for up to 1 hour. The significant discoveries not only support the established assertions about the anti-inflammatory properties of C. torulosa needles but also highlight their potential as a useful resource in the growing herbal, complementary, and alternative medicine sectors.
Collapse
Affiliation(s)
- Piyush Bhalla
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Kiran Chauhan
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, India
| | | | - V K Varshney
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, India
| |
Collapse
|
12
|
Ali S, Ekbbal R, Salar S, Yasheshwar, Ali SA, Jaiswal AK, Singh M, Yadav DK, Kumar S, Gaurav. Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. ACS OMEGA 2023; 8:39945-39963. [PMID: 37953833 PMCID: PMC10635672 DOI: 10.1021/acsomega.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Medicinal plants are rich sources of natural oils such as essential and fixed oils used traditionally for nutritive as well as medicinal purposes. Most of the traditional formulations or phytopharmaceutical formulations contain oil as the main ingredient due to their own therapeutic applications and thus mitigating several pathogeneses such as fungal/bacterial/viral infection, gout, psoriasis, analgesic, antioxidant, skin infection, etc. Due to the lack of quality standards and progressive adulteration in the natural oils, their therapeutic efficacy is continuously deteriorated. To develop quality standards and validate scientific aspects on essential oils, several chromatographic and spectroscopic techniques such as HPTLC, HPLC, NMR, LC-MS, and GC-MS have been termed as the choices of techniques for better exploration of metabolites, hence sustaining the authenticity of the essential oils. In this review, chemical profiling and quality control aspects of essential or fixed oils have been explored from previously reported literature in reputed journals. Methods of chemical profiling, possible identified metabolites in essential oils, and their therapeutic applications have been described. The outcome of the review reveals that GC-MS/MS, LC-MS/MS, and NMR-based chromatographic and spectroscopic techniques are the most liable, economic, precise, and accurate techniques for determining the spuriousness or adulteration of oils based on their qualitative and quantitative chemical profiling studies. This review occupies the extensive information about the quality standards of several oils obtained from natural sources for their regulatory aspects via providing the detailed methods used in chemoprofiling techniques. Hence, this review helps researchers in further therapeutic exploration as well as quality-based standardization for their regulatory purpose.
Collapse
Affiliation(s)
- Shadab Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Rustam Ekbbal
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Sapna Salar
- BBDIT
College of Pharmacy, Ghaziabad, Uttar Pradesh 201206, India
| | - Yasheshwar
- Department
of Botany, Acharya Narendra Dev College
(University of Delhi), Govindpuri,
Kalkaji, New Delhi 110019, India
| | - Sayad Ahad Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Aakash Kumar Jaiswal
- School
of Pharmaceutical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Mhaveer Singh
- Pharmacy
Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Dinesh Kumar Yadav
- Department
of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Santosh Kumar
- Department
of Botany, Maharaja Bijli Paasi Government
Post Graduate College, Sector M, Ashiyana, Lucknow, Uttar Pradesh 226012, India
| | - Gaurav
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| |
Collapse
|
13
|
Tan L, Zhong MM, Zhao YQ, Zhao J, Dusenge MA, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Chen NX, Su XL, Zhang Q, Liu Q, Yuan H, Wang MY, Feng YZ, Guo Y. Type 1 diabetes, glycemic traits, and risk of dental caries: a Mendelian randomization study. Front Genet 2023; 14:1230113. [PMID: 37881806 PMCID: PMC10597668 DOI: 10.3389/fgene.2023.1230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Regarding past epidemiological studies, there has been disagreement over whether type 1 diabetes (T1DM) is one of the risk factors for dental caries. The purpose of this study was to determine the causative links between genetic susceptibility to T1DM, glycemic traits, and the risk of dental caries using Mendelian randomization (MR) approaches. Methods: Summary-level data were collected on genome-wide association studies (GWAS) of T1DM, fasting glucose (FG), glycated hemoglobin (HbA1c), fasting insulin (FI), and dental caries. MR was performed using the inverse-variance weighting (IVW) method, and sensitivity analyses were conducted using the MR-Egger method, weighted median, weighted mode, replication cohort, and multivariable MR conditioning on potential mediators. Results: The risk of dental caries increased as a result of genetic susceptibility to T1DM [odds ratio (OR) = 1.044; 95% confidence interval (CI) = 1.015-1.074; p = 0.003], with consistent findings in the replication cohort. The relationship between T1DM and dental caries was stable when adjusted for BMI, smoking, alcohol intake, and type 2 diabetes (T2DM) in multivariable MR. However, no significant correlations between the risk of dental caries and FG, HbA1c, or FI were found. Conclusion: These results indicate that T1DM has causal involvement in the genesis of dental caries. Therefore, periodic reinforcement of oral hygiene instructions must be added to the management and early multidisciplinary intervention of T1DM patients, especially among adolescents and teenagers, who are more susceptible to T1DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Gioxari A, Amerikanou C, Valsamidou E, Kleftaki SA, Tzavara C, Kalaitzopoulou A, Stergiou I, Smyrnioudis I, Kaliora AC. Chios mastiha essential oil exhibits antihypertensive, hypolipidemic and anti-obesity effects in metabolically unhealthy adults - a randomized controlled trial. Pharmacol Res 2023; 194:106821. [PMID: 37329633 DOI: 10.1016/j.phrs.2023.106821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The essential oil of the resinous exudate from Pistacia lentiscus of Chios namely Chios Mastiha Essential Oil (CMEO), is a natural volatile oil rich in monoterpenes α-pinene, β-myrcene, β-pinene. In the present randomized controlled trial, we investigated the effects of CMEO on individuals with abdominal obesity and metabolic abnormalities i.e., dyslipidemia, hypertension, insulin resistance. Eligible patients (N = 94) were randomly assigned to either the intervention group, receiving capsules containing 200 mg of CMEO daily for 3 months adjunct to current treatment for metabolic disorder(s), or the control group. Anthropometric measurements, blood markers, and quality of life (QoL) were assessed. Statistical analysis was performed on an intention-to-treat basis. A significant improvement in blood lipid profile, namely triglycerides (p = 0.026) and low-density lipoprotein (p = 0.05) of the CMEO group versus controls was observed. Systolic blood pressure (p = 0.05) and alanine aminotransferase (p = 0.022) significantly decreased only after CMEO intake. Alike, weight decreased only in CMEO (p = 0.02), while mean changes in % body fat (p = 0.005) and visceral fat (p = 0.045) were significantly different between groups post-intervention. Lower oxidized LDL (p = 0.044) and higher adiponectin (p = 0.007) were recorded in CMEO with significant different mean changes between groups post-intervention. QoL, as assessed by Short Form-12 questionnaire was improved in the CMEO compared to control (p = 0.041 for Physical Composite Score, p = 0.035 for Mental Composite Score). No adverse effects were reported. An anti-obesity effect of CMEO, probably attributed to modulation of inflammatory and antioxidant processes, is suggested. Conclusively, CMEO can be safe and effective in regulating metabolic abnormalities, adjunct to treatment. (ClinicalTrials.gov. The effect of Mastiha oil in Metabolic Syndrome, ID Number: NCT04785573).
Collapse
Affiliation(s)
- Aristea Gioxari
- Department of Nutritional Science and Dietetics, School of Health Science, University of the Peloponnese, Antikalamos, 24100 Kalamata, Messinia, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | - Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | - Stamatia-Angeliki Kleftaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | - Chara Tzavara
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | | | - Ioannis Stergiou
- Diabetes Outpatient Department, General Hospital G. Gennimatas, Thessaloniki, Greece
| | | | - Adriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece.
| |
Collapse
|