1
|
Nikolaev AS, Lunegova DA, Raevskii RI, Shishkin PE, Remeeva AA, Ge B, Maksimov EG, Gushchin IY, Sluchanko NN. Re-engineering of a carotenoid-binding protein based on NMR structure. Protein Sci 2024; 33:e5216. [PMID: 39548819 PMCID: PMC11568390 DOI: 10.1002/pro.5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024]
Abstract
Recently, a number of message passing neural network (MPNN)-based methods have been introduced that, based on backbone atom coordinates, efficiently recover native amino acid sequences of proteins and predict modifications that result in better expressing, more soluble, and stable variants. However, usually, X-ray structures, or artificial structures generated by algorithms trained on X-ray structures, were employed to define target backbone conformations. Here, we show that commonly used algorithms ProteinMPNN and SolubleMPNN display low sequence recovery on structures determined using NMR. We subsequently propose a computational approach that we successfully apply to re-engineer AstaP, a protein that natively binds a large hydrophobic ligand astaxanthin (C40H52O4), and for which only a structure determined using NMR is currently available. The engineered variants, designated NeuroAstaP, are 51 amino acid shorter than the 22 kDa parent protein, have 38%-42% sequence identity to it, exhibit good yields, are expressed in a soluble, mostly monomeric form, and demonstrate efficient binding of carotenoids in vitro and in cells. Altogether, our work further tests the limits of using machine learning for protein engineering and paves the way for MPNN-based modification of proteins based on NMR-derived structures.
Collapse
Affiliation(s)
- Andrey S. Nikolaev
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Daria A. Lunegova
- A.N. Bach Institute of BiochemistryFederal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | - Roman I. Raevskii
- A.N. Bach Institute of BiochemistryFederal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | - Pavel E. Shishkin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alina A. Remeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Baosheng Ge
- College of Chemistry and Chemical EngineeringChina University of Petroleum (Huadong)QingdaoChina
| | | | - Ivan Yu. Gushchin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of BiochemistryFederal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| |
Collapse
|
2
|
Lunegova DA, Gvozdev DA, Senin II, Gudkova VR, Sidorenko SV, Tiulina VV, Shebardina NG, Yakovleva MA, Feldman TB, Ramonova AA, Moysenovich AM, Semenov AN, Zernii EY, Maksimov EG, Sluchanko NN, Kirpichnikov MP, Ostrovsky MA. Antioxidant properties of the soluble carotenoprotein AstaP and its feasibility for retinal protection against oxidative stress. FEBS J 2024. [PMID: 39580658 DOI: 10.1111/febs.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Photodamage to the outer segments of photoreceptor cells and their impaired utilization by retinal pigment epithelium (RPE) cells contribute to the development of age-related macular degeneration (AMD) leading to blindness. Degeneration of photoreceptor cells and RPE cells is triggered by reactive oxygen species (ROS) produced by photochemical reactions involving bisretinoids, by-products of the visual cycle, which accumulate in photoreceptor discs and lipofuscin granules of RPE. Carotenoids, natural antioxidants with high potential efficacy against a wide range of ROS, may protect against the cytotoxic properties of lipofuscin. To solve the problem of high hydrophobicity of carotenoids and increase their bioaccessibility, specialized proteins can ensure their targeted delivery to the affected tissues. In this study, we present new capabilities of the recombinant water-soluble protein AstaP from Coelastrella astaxanthina Ki-4 (Scenedesmaceae) for protein-mediated carotenoid delivery and demonstrate how zeaxanthin delivery suppresses oxidative stress in a lipofuscin-enriched model of photoreceptor and pigment epithelium cells. AstaP in complex with zeaxanthin can effectively scavenge various ROS (singlet oxygen, free radical cations, hydrogen peroxide) previously reported to be generated in AMD. In addition, we explore the potential of optimizing the structure of AstaP to enhance its thermal stability and resistance to proteolytic activity in the ocular media. This optimization aims to maximize the prevention of retinal degenerative changes in AMD.
Collapse
Affiliation(s)
- Daria A Lunegova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Danil A Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Natalia G Shebardina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alla A Ramonova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | | | - Alexey N Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Mikhail A Ostrovsky
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Egorkin NA, Dominnik EE, Raevskii RI, Kuklina DD, Varfolomeeva LA, Popov VO, Boyko KM, Sluchanko NN. Structural basis of selective beta-carotene binding by a soluble protein. Structure 2024; 32:2123-2133.e3. [PMID: 39383875 DOI: 10.1016/j.str.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
β-carotene (BCR) is the most abundant carotenoid, a colorant, antioxidant, and provitamin A. The extreme hydrophobicity of this hydrocarbon requires special mechanisms for distribution in aqueous media, including water-soluble carotenoproteins. However, all known carotenoproteins prefer oxygenated carotenoids and bind BCR inefficiently. Here, we present the crystal structure of the BCR-binding protein (BBP) from gregarious male locusts, which is responsible for their vivid yellow body coloration, in complex with its natural ligand, BCR. BBP forms an antiparallel tubular homodimer with α/β-wrap folded monomers, each forming a hydrophobic 47 Å long, coaxial tunnel that opens outward and is occupied by one s-cisC6-C7, all-trans BCR molecule. In the BCR absence, BBP accepts a range of xanthophylls, with reduced efficiency depending on the position and number of oxygen atoms, but rejects lycopene. The structure captures a pigment complex with a Takeout 1 protein and inspires potential applications of BBP as a BCR solubilizer.
Collapse
Affiliation(s)
- Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, School of Biology, 1 Lenin Hills, building 12, Moscow 119991, Russia
| | - Eva E Dominnik
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, School of Chemistry, 1 Lenin Hills, building 3, Moscow 119991, Russia
| | - Roman I Raevskii
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia
| | - Daria D Kuklina
- Moscow Institute of Physics and Technology, Institutski per. 9, Dolgoprudny 141700, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow 119071, Russia.
| |
Collapse
|
4
|
Zhang Y, Savvidou M, Liaudanskaya V, Ramanathan V, Bui T, Matthew L, Sze A, Ugwu UO, Yuhang F, Matthew DE, Chen X, Nasritdinova S, Dey A, Miller EL, Kaplan DL, Georgakoudi I. Multi-modal, Label-free, Optical Mapping of Cellular Metabolic Function and Oxidative Stress in 3D Engineered Brain Tissue Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607216. [PMID: 39211249 PMCID: PMC11361058 DOI: 10.1101/2024.08.08.607216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brain metabolism is essential for the function of organisms. While established imaging methods provide valuable insights into brain metabolic function, they lack the resolution to capture important metabolic interactions and heterogeneity at the cellular level. Label-free, two-photon excited fluorescence imaging addresses this issue by enabling dynamic metabolic assessments at the single-cell level without manipulations. In this study, we demonstrate the impact of spectral imaging on the development of rigorous intensity and lifetime label-free imaging protocols to assess dynamically over time metabolic function in 3D engineered brain tissue models comprising human induced neural stem cells, astrocytes, and microglia. Specifically, we rely on multi-wavelength spectral imaging to identify the excitation/emission profiles of key cellular fluorophores within human brain cells, including NAD(P)H, LipDH, FAD, and lipofuscin. These enable development of methods to mitigate lipofuscin's overlap with NAD(P)H and flavin autofluorescence to extract reliable optical metabolic function metrics from images acquired at two excitation wavelengths over two emission bands. We present fluorescence intensity and lifetime metrics reporting on redox state, mitochondrial fragmentation, and NAD(P)H binding status in neuronal monoculture and triculture systems, to highlight the functional impact of metabolic interactions between different cell types. Our findings reveal significant metabolic differences between neurons and glial cells, shedding light on metabolic pathway utilization, including the glutathione pathway, OXPHOS, glycolysis, and fatty acid oxidation. Collectively, our studies establish a label-free, non-destructive approach to assess the metabolic function and interactions among different brain cell types relying on endogenous fluorescence and illustrate the complementary nature of information that is gained by combining intensity and lifetime-based images. Such methods can improve understanding of physiological brain function and dysfunction that occurs at the onset of cancers, traumatic injuries and neurodegenerative diseases.
Collapse
|
5
|
Egorkin NA, Dominnik EE, Maksimov EG, Sluchanko NN. Insights into the molecular mechanism of yellow cuticle coloration by a chitin-binding carotenoprotein in gregarious locusts. Commun Biol 2024; 7:448. [PMID: 38605243 PMCID: PMC11009388 DOI: 10.1038/s42003-024-06149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble β-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds β-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, β-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while β-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.
Collapse
Affiliation(s)
- Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Eva E Dominnik
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
7
|
Ravera S, Bertola N, Puddu A, Bruno S, Maggi D, Panfoli I. Crosstalk between the Rod Outer Segments and Retinal Pigmented Epithelium in the Generation of Oxidative Stress in an In Vitro Model. Cells 2023; 12:2173. [PMID: 37681906 PMCID: PMC10487269 DOI: 10.3390/cells12172173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Dysfunction of the retinal pigment epithelium (RPE) is associated with several diseases characterized by retinal degeneration, such as diabetic retinopathy (DR). However, it has recently been proposed that outer retinal neurons also participate in the damage triggering. Therefore, we have evaluated the possible crosstalk between RPE and photoreceptors in priming and maintaining oxidative damage of the RPE. For this purpose, we used ARPE-19 cells as a model of human RPE, grown in normal (NG, 5.6 mM) or high glucose (HG, 25 mM) and unoxidized (UOx) or oxidized (Ox) mammalian retinal rod outer segments (OSs). ARPE-19 cells were efficient at phagocytizing rod OSs in both NG and HG settings. However, in HG, ARPE-19 cells treated with Ox-rod OSs accumulated MDA and lipofuscins and displayed altered LC3, GRP78, and caspase 8 expression compared to untreated and UOx-rod-OS-treated cells. Data suggest that early oxidative damage may originate from the photoreceptors and subsequently extend to the RPE, providing a new perspective to the idea that retinal degeneration depends solely on a redox alteration of the RPE.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, Università di Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Università di Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Isabella Panfoli
- Department of Pharmacy-(DIFAR), Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| |
Collapse
|
8
|
Kornilov FD, Slonimskiy YB, Lunegova DA, Egorkin NA, Savitskaya AG, Kleymenov SY, Maksimov EG, Goncharuk SA, Mineev KS, Sluchanko NN. Structural basis for the ligand promiscuity of the neofunctionalized, carotenoid-binding fasciclin domain protein AstaP. Commun Biol 2023; 6:471. [PMID: 37117801 PMCID: PMC10147662 DOI: 10.1038/s42003-023-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
Fasciclins (FAS1) are ancient adhesion protein domains with no common small ligand binding reported. A unique microalgal FAS1-containing astaxanthin (AXT)-binding protein (AstaP) binds a broad repertoire of carotenoids by a largely unknown mechanism. Here, we explain the ligand promiscuity of AstaP-orange1 (AstaPo1) by determining its NMR structure in complex with AXT and validating this structure by SAXS, calorimetry, optical spectroscopy and mutagenesis. α1-α2 helices of the AstaPo1 FAS1 domain embrace the carotenoid polyene like a jaw, forming a hydrophobic tunnel, too short to cap the AXT β-ionone rings and dictate specificity. AXT-contacting AstaPo1 residues exhibit different conservation in AstaPs with the tentative carotenoid-binding function and in FAS1 proteins generally, which supports the idea of AstaP neofunctionalization within green algae. Intriguingly, a cyanobacterial homolog with a similar domain structure cannot bind carotenoids under identical conditions. These structure-activity relationships provide the first step towards the sequence-based prediction of the carotenoid-binding FAS1 members.
Collapse
Affiliation(s)
- Fedor D Kornilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Daria A Lunegova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Anna G Savitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Sergey Yu Kleymenov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991, Moscow, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia.
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|