1
|
Hosseintabar-Ghasemabad B, Kvan OV, Sheida EV, Bykov AV, Zigo F, Seidavi A, Elghandour MMMY, Cipriano-Salazar M, Lackner M, Salem AZM. Nano selenium in broiler feeding: physiological roles and nutritional effects. AMB Express 2024; 14:117. [PMID: 39495406 PMCID: PMC11535084 DOI: 10.1186/s13568-024-01777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Using nanotechnology, while improving the health of broiler chickens, it is possible to control and reduce the conflict of minerals in the intestines, and toxicity of and pollution by these elements. It could be shown that the antioxidant and immune modulation effects of nano selenium are significantly superior compared to other sources of selenium. In addition, improving the quality of meat products with the use of nano selenium has promising results in the future perspective of quality improvement and food safety. Nutrition of permitted and optimal levels is very important in the consumption of nano selenium form and as it can have significant beneficial functional and health effects, in case of errors in the selected levels and doses, irreparable side effects and adverse results can occur. In this review report, an attempt has been made to introduce the position and importance of selenium and the approach of smart consumption of its nano form in the nutrition of broiler chickens. The novelty of using nanotechnology in feeding broiler chickens can be a unique opportunity to improve the bioavailability of important and rare elements such as selenium.
Collapse
Affiliation(s)
| | - Olga Vilorievna Kvan
- Institute of Bioelementology, FSBEI HE "Orenburg State University", Povedy Avenue, 13, Orenburg, 460018, Russia
- Federal Scientific Center for Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29 9th January Str., Orenburg, 460000, Russia
| | - Elena Vladimirovna Sheida
- Institute of Bioelementology, FSBEI HE "Orenburg State University", Povedy Avenue, 13, Orenburg, 460018, Russia
- Federal Scientific Center for Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29 9th January Str., Orenburg, 460000, Russia
| | - Artem Vladimirovich Bykov
- Department of Food Biotechnology, FSBEI HE "Orenburg State University", Pobedy Avenue, 13, Orenburg, Russia
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Alireza Seidavi
- Department of Animal Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | | | - Moises Cipriano-Salazar
- Facultad de Medicina Veterinaria y Zootecnia No. 1, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna, 1200, Austria.
| | | |
Collapse
|
2
|
Reda FM, Alagawany M, Salah AS, Mahmoud MA, Azzam MM, Di Cerbo A, El-Saadony MT, Elnesr SS. Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota. Biol Trace Elem Res 2024; 202:4191-4202. [PMID: 38110606 DOI: 10.1007/s12011-023-03996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
This study was conducted to examine the influence of dietary supplementation of biological nano-selenium (BNSe) on productive performance, hematology, blood chemistry, antioxidant status, immune response, cecal microbiota, and carcass traits of quails. In total, 180 Japanese quails (1 week old) were randomly allocated into four groups, with five replicates of nine chicks each in a complete randomized design. The 1st group was fed a control diet without BNSe, and the 2nd, 3rd, and 4th treatments were fed diets supplemented with BNSe (0.2, 0.4, and 0.6 g /kg feed, respectively). The best level of BNSe in body weight (BW) and body weight gain (BWG) parameters was 0.4 g/kg diet. Feed conversion was improved (P < 0.01) by adding BNSe in quail feed compared with the basal diet without any supplementation. The inclusion of different BNSe levels (0.2, 0.4, 0.6 g/kg) exhibited an insignificant influence on all carcass traits. The dietary addition of BNSe (0.4 and 0.6 g/kg) significantly augmented aspartate aminotransferase (AST) activity (P = 0.0127), total protein and globulin (P < 0.05), white blood cells (WBCs) (P = 0.031), and red blood cells (RBCs) (P = 0.0414) compared with the control. The dietary BNSe supplementation significantly improved lipid parameters, antioxidant and immunological indices, and increased selenium level in the blood (P < 0.05). BNSe significantly increased (P = 0.0003) lactic acid bacteria population number and lowered the total number of yeasts, molds, total bacterial count, E. coli, Coliform, Salmonella, and Enterobacter (P < 0.0001). In conclusion, adding BNSe up to 0.4 and 0.6 g/kg can boost the growth, lactic acid bacteria population number, hematology, immunological indices, antioxidant capacity, and lipid profile, as well as decline intestinal pathogens in growing quail.
Collapse
Affiliation(s)
- Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Milan, Matelica, Italy
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Shaaban S Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
3
|
Yang YY, An YC, Zhang SY, Huang MY, Ye XQ, Zhao ZH, Liu WC. Biogenic Selenium Nanoparticles Synthesized Using Alginate Oligosaccharides Attenuate Heat Stress-Induced Impairment of Breast Meat Quality via Regulating Oxidative Stress, Metabolome and Ferroptosis in Broilers. Antioxidants (Basel) 2023; 12:2032. [PMID: 38136152 PMCID: PMC10740886 DOI: 10.3390/antiox12122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm with an 8% Se content, and the dietary addition of 5 mg/kg of SeNPs-AOS could effectively alleviate the deleterious effects of heat stress (HS) in broilers, but it is still unclear whether SeNPs-AOS can improve the meat quality. Therefore, the aim of this study was to evaluate the protective effects of SeNPs-AOS on breast meat quality in heat-stressed broilers, and explore the relevant mechanisms. Birds at the age of 21 days were randomly divided into four groups with six replicates per group (eight broilers per replicate) according to a 2 × 2 experimental design, using HS (33 ± 2 °C, 10 h/day vs. thermoneutral, TN, under 23 ± 1.5 °C) and SeNPs-AOS (5 mg/kg feed vs. no inclusion) as variables. The results showed that dietary SeNPs-AOS decreased the cooking loss (p < 0.05), freezing loss (p < 0.001), and shear force (p < 0.01) of breast muscle in heat-stressed broilers. The non-targeted metabolomics analysis of the breast muscle identified 78 differential metabolites between the HS and HS + SeNPs-AOS groups, mainly enriched in the arginine and proline metabolism, β-alanine metabolism, D-arginine and D-ornithine metabolism, pantothenate, and CoA biosynthesis pathways (p < 0.05). Meanwhile, supplementation with SeNPs-AOS increased the levels of the total antioxidant capacity (T-AOC), the activities of catalase (CAT) and glutathione peroxidase (GSH-Px), and decreased the content of malondialdehyde (MDA) in the breast muscle (p < 0.05) in broilers under HS exposure. Additionally, SeNPs-AOS upregulated the mRNA expression of CAT, GPX1, GPX3, heme oxygenase-1 (HO-1), masculoaponeurotic fibrosarcoma G (MafG), MafK, selenoprotein W (SELENOW), SELENOK, ferritin heavy polypeptide-1 (FTH1), Ferroportin 1 (Fpn1), and nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.05), while it downregulated Kelch-like ECH-associated pro-36 tein 1 (Keap1) and prostaglandin-endoperoxide Synthase 2 (PTGS2) expression (p < 0.05) in broilers under HS. These findings demonstrated that the dietary addition of SeNPs-AOS mitigated HS-induced oxidative damage and metabolite changes in the breast muscle of broilers, which may be related to the regulation of the Nrf2 signaling pathway and selenoprotein synthesis. In addition, SeNPs-AOS upregulated the breast muscle gene expression of anti-ferroptosis-related molecules in broilers under HS, suggesting that SeNPs-AOS can be used as novel Se supplements against HS in broilers.
Collapse
Affiliation(s)
- Yu-Ying Yang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Yu-Chen An
- School of Computer Science and Engineering, Yangjiang Campus, Guangdong Ocean University, Yangjiang 529500, China;
| | - Shu-Yue Zhang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Meng-Yi Huang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Xue-Qing Ye
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| |
Collapse
|
4
|
Al-Quwaie DA. The influence of bacterial selenium nanoparticles biosynthesized by Bacillus subtilus DA20 on blood constituents, growth performance, carcass traits, and gut microbiota of broiler chickens. Poult Sci 2023; 102:102848. [PMID: 37406433 PMCID: PMC10466240 DOI: 10.1016/j.psj.2023.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023] Open
Abstract
Selenium is one of the necessary micronutrients needed for enhanced gut microbiota and oxidative stress of poultry, so it improves their performance. In this study, Bacillus subtilus DA20 isolate that identified at the gene level by PCR was employed to produce eco-friendly selenium nanoparticles (BSeNPs) and investigate their effects on growth performance, carcass characteristics, blood parameters, and gut microbiota of Indian River (IR) broiler chickens. The obtained selenium nanoparticles were spherical with size of 56 nm and net negative charge of -22.36 mV; the BSeNPs were surrounded with active compounds, which besides the tiny size attributed to antioxidant and antibacterial activity. Forty hundred and eighty unsexed IR broilers, 1-day old, were reared for 35 d. The chicks were weighed separately and distributed into 3 treatment groups; each group contained 4 replicates (40 birds per replicate). Chicks in the first, second, third, fourth groups were fed control diets supplemented with 0, 20, 40, and 60 µg/kg of BSeNPs, respectively; but the fifth group was fed 300 µg/kg bulk selenium. Dietary supplementation with BSeNPs (40 µg/kg diet) significantly increased the body weight of chicks and decreased the feed conversion ratio. Additionally, dietary BSeNPs significantly (P = 0.046) lowered the fat content in broiler by 24% compared to the control; on the other hand, the breast muscle significantly increased (P = 0.035) by 19%. The content of total bacterial count (TBC), total yeast mold count (TYMC), E. coli, and Salmonella counts significantly was decreased with BSeNPs and Se compared to the control. However, lactic acid bacteria (LAB) was significantly increased with BSeNPs (60 μg/kg) when compared to control, showing the beneficial effects of BSeNPs in reducing pathogens and enhancing the beneficial bacteria, which reflects on the broiler performance.
Collapse
Affiliation(s)
- Diana A Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| |
Collapse
|