1
|
Lu X, Cui J, Qi J, Li S, Yu W, Li C. The strigolactones-mediated DNA demethylation activates the phosphoinositide pathway in response to salt stress. Int J Biol Macromol 2025; 301:139954. [PMID: 39863214 DOI: 10.1016/j.ijbiomac.2025.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear. In this study, the interaction between SLs and DNA methylation inhibitors 5-azacytidine (5-azaC) alleviate salt stress damage by increasing the plant height, stem diameter, leaf area, and root length of tomato, as well as enhancing the biosynthesis of chlorophyll, carotenoid and flavonoid. The transcriptome and genome-wide methylation analysis between NaCl and NaCl + GR24 treatment show that plant-pathogen interaction, MAPK signaling pathway, plant hormone signal transduction and phosphatidylinositol signaling system may be means for SLs in response to salt stress. Among, SLs strikingly up-regulate the pivotal genes related to phosphatidylinositol signaling system, and reduce CHG methylation level in promoter and body region of these genes under salt stress, implying that SLs mediated-demethylation may promote gene expression. The determination results of relevant metabolites and gene expression levels in the phosphatidylinositol signaling system suggest that PIP2, DAG, IP3, and PA are raised by co-treatment of SLs and 5-azaC under salt stress relative to NaCl + 5-azaC treatment. The same response pattern is also presented in the SlPLC2, SlNPC1, SlPLD-Z, SlPLD-B, SlDGK1, SlDGK5, SlDGK7 and SlPIP5K9 genes. These results strongly indicate that phosphatidylinositol signaling system response to salt stress is related to the SLs mediated-demethylation, and provide a potential means for defenses salt stress in tomato.
Collapse
Affiliation(s)
- Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Shaoxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Zhang J, Zheng D, Feng N, Khan A, Deng R, Xiong J, Ding L, Sun Z, Li J, Yang X, Wu C. Regulation of Exogenous Strigolactone on Storage Substance Metabolism and Endogenous Hormone Levels in the Early Germination Stage of Rice Seeds Under Salt Stress. Antioxidants (Basel) 2024; 14:22. [PMID: 39857356 PMCID: PMC11760831 DOI: 10.3390/antiox14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Salt stress inhibits rice seed germination. Strigolactone (GR24) plays a vital role in enhancing plant tolerance against salt stress. However, GR24's impact on the metabolism of stored substances and endogenous hormones remains unclear. This study investigated the impact of exogenous GR24 on the metabolism of stored substances and endogenous hormones during the early stages of rice seed germination under salt stress. The results showed that salt stress significantly reduced the germination rate, germination potential, germination index, radicle length, germ length, and fresh and dry weights of the radicle and germ under salt stress. Pre-treatment (1.2 μmol L-1 GR24) significantly reduced the inhibition of salt stress on rice seed germination and seedling growth. GR24 promoted the decomposition of starch by enhancing the activities of α-amylase, β-amylase, and total amylase and improved the levels of soluble sugars and proteins and the conversion rate of substances under salt stress. GR24 effectively enhanced the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX); increased ascorbic acid (ASA) and glutathione (GSH) levels; and reduced malondialdehyde (MDA) content. This reduced the oxidative damage of salt stress. Furthermore, GR24 significantly increased the contents of strigolactones (SLs), auxin (IAA), gibberellin (GA3), cytokinin (CTK) as well as IAA/ABA, CTK/ABA, GA/ABA, and SL/ABA ratios and reduced abscisic acid (ABA) levels. The current findings indicate that GR24 effectively mitigates the adverse impact salt stress by regulating antioxidant enzyme activity and endogenous hormone balance.
Collapse
Affiliation(s)
- Jianqin Zhang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Rui Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Jian Xiong
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Linchong Ding
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Zhiyuan Sun
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Jiahuan Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Xiaohui Yang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Chen Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Center of National Saline-Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
3
|
Tang J, Ji X, Li A, Zheng X, Zhang Y, Zhang J. Effect of Persistent Salt Stress on the Physiology and Anatomy of Hybrid Walnut ( Juglans major × Juglans regia) Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1840. [PMID: 38999680 PMCID: PMC11244109 DOI: 10.3390/plants13131840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Soil salinization has become one of the major problems that threaten the ecological environment. The aim of this study is to explore the mechanism of salt tolerance of hybrid walnuts (Juglans major × Juglans regia) under long-term salt stress through the dynamic changes of growth, physiological and biochemical characteristics, and anatomical structure. Our findings indicate that (1) salt stress inhibited seedling height and ground diameter increase, and (2) with increasing salt concentration, relative water content (RWC) decreased, and proline (Pro) and soluble sugar (SS) content increased. The Pro content reached a maximum of 549.64 μg/g on the 42nd day. The increase in superoxide dismutase (SOD) activity (46.80-117.16%), ascorbate peroxidase (APX) activity, total flavonoid content (TFC), and total phenol content (TPC) under salt stress reduced the accumulation of malondialdehyde (MDA). (3) Increasing salt concentration led to increases and subsequent decreases in the thickness of palisade tissues, spongy tissues, leaves, and leaf vascular bundle diameter. Upper and lower skin thickness, root periderm thickness, root diameter, root cortex thickness, and root vascular bundle diameter showed different patterns of change at varying stress concentrations and durations. Overall, the study concluded that salt stress enhanced the antireactive oxygen system, increased levels of osmotic regulators, and low salt concentrations promoted leaf and root anatomy, but that under long-term exposure to high salt levels, leaf anatomy was severely damaged. For the first time, this study combined the anatomical structure of the vegetative organ of hybrid walnut with physiology and biochemistry, which is of great significance for addressing the challenge of walnut salt stress and expanding the planting area.
Collapse
Affiliation(s)
- Jiali Tang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinying Ji
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ao Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yutong Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100091, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Shahzad K, Danish S, Mubeen S, Dawar K, Fahad S, Hasnain Z, Ansari MJ, Almoallim HS. Minimization of heavy metal toxicity in radish (Raphanus sativus) by strigolactone and biochar. Sci Rep 2024; 14:13616. [PMID: 38871988 DOI: 10.1038/s41598-024-64596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Due to the high solubility of Cd in water, it is considered a potential toxin which can cause cancer in humans. In plants, it is associated with the development of oxidative stress due to the generation of reactive oxygen species. To overcome this issue, the roles of different plant hormones are vital. Strigolactones, one of such natural plant hormones, show promise in alleviating cadmium toxicity by mitigating its harmful effects. Acidified biochar (AB) can also effectively mitigate cadmium toxicity via ion adsorption and pH buffering. However, the combined effects of strigolactone and AB still need in-depth investigations in the context of existing literature. This study aimed to assess the individual and combined impacts of SLs (0 and 25 µM) and AB (0 and 0.75% w/w) on radish growth under Cd toxicity, i.e., 0 and 20 mg Cd/kg soil. Using a fully randomized design (CRD), each treatment was administered in four replicates. In comparison to the control under 20 mg Cd/kg soil contamination, the results showed that 25 µM strigolactone + 0.75% AB significantly improved the following: radish shoot length (~ 17%), root length (~ 47%), plant fresh weight (~ 28%), plant dry weight (~ 96%), chlorophyll a (~ 43%), chlorophyll b (~ 31%), and total chlorophyll (~ 37%). It was also noted that 0.75% AB was more pronounced in decreasing antioxidant activities than 25 µM strigolactone under 20 mg Cd/ kg soil toxicity. However, performing 25 µM strigolactone + 0.75% AB was far better than the sole application of 25 µM strigolactone and 0.75% AB in decreasing antioxidant activities in radish plants. In conclusion, by regulating antioxidant activities, 25 µM strigolactone + 0.75% AB can increase radish growth in cadmium-contaminated soils.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Soil Science, University College of Dera Murad Jamali, LUAWMS, Dera Murad Jamali, Balochistan, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Sidra Mubeen
- Department of Chemistry, The Women University Multan, Multan, 66000, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Zuhair Hasnain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Shah IH, Manzoor MA, Jinhui W, Li X, Hameed MK, Rehaman A, Li P, Zhang Y, Niu Q, Chang L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119978. [PMID: 38169258 DOI: 10.1016/j.jenvman.2023.119978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wu Jinhui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuyang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Asad Rehaman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
6
|
Mansoor S, Mir MA, Karunathilake EMBM, Rasool A, Ştefănescu DM, Chung YS, Sun HJ. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108282. [PMID: 38147706 DOI: 10.1016/j.plaphy.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Strigolactones, which are a group of plant hormones, have emerged as promising biomolecules for effectively managing oxidative stress in plants. Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the plant's ability to detoxify or scavenge these harmful molecules. An elevation in reactive oxygen species (ROS) levels often occurs in response to a range of stressors in plants. These stressors encompass both biotic factors, such as fungal, viral, or nematode attacks, as well as abiotic challenges like intense light exposure, drought, salinity, and pathogenic assaults. This ROS surge can ultimately lead to cellular harm and damage. One of the key ways in which strigolactones help mitigate oxidative stress is by stimulating the synthesis and accumulation of antioxidants. These antioxidants act as scavengers of ROS, neutralizing their harmful effects. Additionally, strigolactones also regulate stomatal closure, which reduces water loss and helps alleviate oxidative stress during conditions of drought stress or water deficiencies. By understanding and harnessing the capabilities of strigolactones, it becomes possible to enhance crop productivity and enable plants to withstand environmental stresses in the face of a changing climate. This comprehensive review provides an in-depth exploration of the various roles of strigolactones in plant growth, development, and response to various stresses, with a specific emphasis on their involvement in managing oxidative stress. Strigolactones also play a critical role in detoxifying ROS while regulating the expression of genes related to antioxidant defense pathways, striking a balance between ROS detoxification and production.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Mudasir A Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - E M B M Karunathilake
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Aatifa Rasool
- Department of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - Dragoş Mihail Ştefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I.Cuza 13, 200585, Craiova, Romania
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
7
|
Song M, Hu N, Zhou S, Xie S, Yang J, Ma W, Teng Z, Liang W, Wang C, Bu M, Zhang S, Yang X, He D. Physiological and RNA-Seq Analyses on Exogenous Strigolactones Alleviating Drought by Improving Antioxidation and Photosynthesis in Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2023; 12:1884. [PMID: 37891963 PMCID: PMC10604895 DOI: 10.3390/antiox12101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction.
Collapse
Affiliation(s)
- Miao Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Songxin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jian Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenqi Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhengkai Teng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenxian Liang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Chunyan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Mingna Bu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shuo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Dexian He
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| |
Collapse
|