1
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024; 77:9-25. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
3
|
Li Q, Hao Z, Xu H, Wang X. Investigation on the lipid-lowering effect and mechanism by combining turmeric with hawthorn in C57BL/6 obese mice. J Food Sci 2024; 89:4493-4504. [PMID: 38804852 DOI: 10.1111/1750-3841.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Study on the hypolipidemic effect of turmeric combined with hawthorn on C57BL/6 obese mice and its possible mechanism. C57 mice were fed with 60% high-fat diet for 8 weeks to establish an obesity model, and 4 mice were slaughtered to verify whether the modeling was successful. The successful mice were divided into model group (HFD), positive group (high fat feed group [HFD] + simvastatin group [SIM]), turmeric group (HFD + TUR), hawthorn group (HFD + HAW), and para-medicine group (HFD + para-drug group [DOU]) for 4 weeks by gavage intervention. Different intervention groups had certain lipid-lowering effects, and the para-medicine group showed significant differences (p < 0.05, p < 0.01, p < 0.001) in reducing serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, glutamic acid transaminase (ALT), glutamic acid transaminase (AST), and increasing high-density lipoprotein cholesterol. In the para-medicine group, the protein expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, platelet-reactive protein receptor 36, and CCAAT/enhancer binding protein α were significantly downregulated, and the protein expression of carnitine palmitoyl transferase1 and peroxisome proliferator-activated receptor α protein expression (p < 0.01, p < 0.001), thus suggesting that turmeric and hawthorn are superior to turmeric and hawthorn alone in enhancing lipid metabolism-related mechanisms. Combined effects of turmeric and hawthorn improve lipid metabolism in mice, protect the liver, and improve the protein expression of liver-related genes. This study can lay the theoretical basis for the future association of medicinal food products and the development of related weight loss products.
Collapse
Affiliation(s)
- Qiang Li
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Huajian Xu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Xueyan Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Zheng X, Li W, Yan Y, Su Z, Huang X. Association between the Dietary Inflammatory Index and fracture risk in older adults: a systematic review and meta-analysis. J Int Med Res 2024; 52:3000605241248039. [PMID: 38698503 PMCID: PMC11067643 DOI: 10.1177/03000605241248039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE We explored correlations between the Dietary Inflammatory Index (DII) and fracture risk in older adults. METHODS We systematically searched MEDLINE, PubMed, Science Direct, Scopus, and CNKI for all relevant epidemiological studies published through October 16, 2023. Because observational studies were included in the meta-analysis, we used a random-effects model to pool the study-specific effect sizes and 95% confidence intervals (CIs). We assessed study quality using the Newcastle-Ottawa scale. This meta-analysis was registered in PROSPERO. RESULTS Eight studies with 462,986 participants were included, with five cohort studies, two cross-sectional studies, and one case-control study. An analysis of heterogeneity among the eight included studies resulted in I2 = 87.1%, indicating significant between-study heterogeneity; hence, the random-effects model was adopted to generate the combined effect size. We found that the DII was positively associated with fracture (relative risk: 1.188, 95% CI: 1.043-1.354). This result was further confirmed in leave-one-out sensitivity analysis. CONCLUSIONS Our study provides evidence suggesting that diets high in pro-inflammatory components might increase the fracture risk among older people. Decreased consumption of pro-inflammatory foods and increased consumption of anti-inflammatory foods are suggested to prevent adverse fracture outcomes. More prospective studies involving both sexes are warranted to verify the results.
Collapse
Affiliation(s)
- Xiaojuan Zheng
- Department of Orthopedics, No. 910 Hospital of The Chinese People’s Liberation Army Joint Logistic Support Force, Quanzhou, China
| | - Wenhui Li
- Health Management Center, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Yonglong Yan
- Department of Rheumatology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Zhaojie Su
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xuelin Huang
- Department of Orthopedics, No. 910 Hospital of The Chinese People’s Liberation Army Joint Logistic Support Force, Quanzhou, China
| |
Collapse
|
5
|
Jiménez-Osorio AS, Carreón-Torres E, Correa-Solís E, Ángel-García J, Arias-Rico J, Jiménez-Garza O, Morales-Castillejos L, Díaz-Zuleta HA, Baltazar-Tellez RM, Sánchez-Padilla ML, Flores-Chávez OR, Estrada-Luna D. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants (Basel) 2023; 12:1894. [PMID: 37891973 PMCID: PMC10604737 DOI: 10.3390/antiox12101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammation and oxidative stress are essential components in a myriad of pathogenic entities that lead to metabolic and chronic diseases. Moreover, inflammation in its different phases is necessary for the initiation and maintenance of a healthy pregnancy. Therefore, an equilibrium between a necessary/pathologic level of inflammation and oxidative stress during pregnancy is needed to avoid disease development. High-density lipoproteins (HDL) are important for a healthy pregnancy and a good neonatal outcome. Their role in fetal development during challenging situations is vital for maintaining the equilibrium. However, in certain conditions, such as obesity, diabetes, and other cardiovascular diseases, it has been observed that HDL loses its protective properties, becoming dysfunctional. Bioactive compounds have been widely studied as mediators of inflammation and oxidative stress in different diseases, but their mechanisms of action are still unknown. Nonetheless, these agents, which are obtained from functional foods, increase the concentration of HDL, TRC, and antioxidant activity. Therefore, this review first summarizes several mechanisms of HDL participation in the equilibrium between inflammation and oxidative stress. Second, it gives an insight into how HDL may act as a vector for bioactive compounds. Third, it describes the relationships between the inflammation process in pregnancy and HDL activity. Consequently, different databases were used, including MEDLINE, PubMed, and Scopus, where scientific articles published in the English language up to 2023 were identified.
Collapse
Affiliation(s)
- Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Emmanuel Correa-Solís
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón 68540, Oaxaca, Mexico;
| | - Julieta Ángel-García
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Octavio Jiménez-Garza
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Lizbeth Morales-Castillejos
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Hugo Alexander Díaz-Zuleta
- Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales, Cl. 222 #54-21, Bogotá 111166, Colombia;
| | - Rosa María Baltazar-Tellez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - María Luisa Sánchez-Padilla
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| |
Collapse
|