1
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Zakaria EM, Mohammed E, Alsemeh AE, Eltaweel AM, Elrashidy RA. Multiple-heated cooking oil promotes early hepatic and renal senescence in adult male rats: the potential regenerative capacity of oleuropein. Toxicol Mech Methods 2024; 34:936-953. [PMID: 38845370 DOI: 10.1080/15376516.2024.2365431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
For economic purposes, cooking oil is repeatedly heated in food preparation, which imposes serious health threats. This study investigated the detrimental effects of multiple-heated cooking oil (MHO) on hepatic and renal tissues with particular focusing on cellular senescence (CS), and the potential regenerative capacity of oleuropein (OLE). Adult male rats were fed MHO-enriched diet for 8 weeks and OLE (50 mg/kg, PO) was administered daily for the last four weeks. Liver and kidney functions and oxidative stress markers were measured. Cell cycle markers p53, p21, cyclin D, and proliferating cell nuclear antigen (PCNA) were evaluated in hepatic and renal tissues. Tumor necrosis factor-α (TNF-α) and Bax were assessed by immunohistochemistry. General histology and collagen deposition were also examined. MHO disturbed hepatic and renal structures and functions. MHO-fed rats showed increased oxidative stress, TNF-α, Bax, and fibrosis in liver and kidney tissues. MHO also enhanced the renal and hepatic expression of p53, p21, cyclin D and PCNA. On the contrary, OLE mitigated MHO-induced oxidative stress, inflammatory burden, apoptotic and fibrotic changes. OLE also suppressed CS and preserved kidney and liver functions. Collectively, OLE displays marked regenerative capacity against MHO-induced hepatic and renal CS, via its potent antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Ebaa Mohammed
- Pharmacology Department, Zagazig University, Zagazig, Egypt
- Medicines Information Center, Zagazig University Hospitals, Zagazig, Egypt
| | | | - Asmaa Monir Eltaweel
- Anatomy and Embryology Department, Zagazig University, Zagazig, Egypt
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Maiuolo J, Bonacci S, Bosco F, Guarnieri L, Ruga S, Leo A, Citraro R, Ragusa S, Palma E, Mollace V, De Sarro G. Two Olea europaea L. Extracts Reduce Harmful Effects in a Model of Neurotoxicity: Involvement of the Endoplasmic Reticulum. PLANTA MEDICA 2024; 90:844-857. [PMID: 38925154 PMCID: PMC11387015 DOI: 10.1055/a-2353-1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Prolonged exposure to lead has been recognized as harmful to human health as it may cause neurotoxic effects including mitochondrial damage, apoptosis, excitotoxicity, and myelin formation alterations, among others. Numerous data have shown that consuming olive oil and its valuable components could reduce neurotoxicity and degenerative conditions. Olive oil is traditionally obtained from olive trees; this plant (Olea europaea L.) is an evergreen fruit tree.In this manuscript, two extracts have been used and compared: the extract from the leaves of Olea europaea L. (OE) and the extract derived from OE but with a further sonication process (s-OE). Therefore, the objectives of this experimental work were as follows: 1) to generate an innovative extract; 2) to test both extracts on a model of neurotoxicity of human neurons induced following lead exposure; and 3) to study the mechanisms behind lead-induced neurotoxicity.The results showed that the mechanism involved in the neurotoxicity of lead included dysfunction of the cellular endoplasmic reticulum, which suffered oxidative damage. In addition, in all experiments, s-OE was more effective than OE, having greater and better effects against lead-induced damage and being dissolved in a smaller amount of EtOH, which promotes its sustainability.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Sonia Bonacci
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Salvatore Ragusa
- PLANTA/Research, Documentation and Training Center, Palermo, Italy
| | - Ernesto Palma
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Frumuzachi O, Gavrilaș LI, Vodnar DC, Rohn S, Mocan A. Systemic Health Effects of Oleuropein and Hydroxytyrosol Supplementation: A Systematic Review of Randomized Controlled Trials. Antioxidants (Basel) 2024; 13:1040. [PMID: 39334699 PMCID: PMC11428715 DOI: 10.3390/antiox13091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Non-communicable diseases (NCDs) cause 41 million deaths annually, accounting for 74% of global fatalities. The so-called Mediterranean diet, with its especially significant consumption of olive oil, has shown promising results in reducing the risk of developing NCDs, such as cardiovascular, liver, or bone diseases. In the context of the nutritional health benefits of foods, phenolic compounds such as olive oil's main components, oleuropein (OLE) and hydroxytyrosol (HT), have been shown to possess different beneficial effects. However, no systematic review has evaluated the health-promoting effects of OLE and HT until now. Consequently, this systematic review analyzed 12 human randomized controlled trials (RCTs), involving 683 participants, to assess the effects of supplements, pure compounds, or enriched foods containing OLE and HT regarding systemic health outcomes, including CVD risk factors, liver parameters, and bone, joint, and cognitive health. The review found contrasting but encouraging results, with some studies reporting significant modulation of body weight, lipid profile, and glucose metabolism, and improvements in bone, joint, and cognitive functions. The studies described different dosages and forms of supplementation, ranging from 5 mg/d HT to 990 mL/d olive leaf infusion (320.8 mg OLE and 11.9 mg HT), highlighting the need for further research to determine the optimal dosing and duration. Despite the mixed outcomes, OLE and HT supplementation show potential for improving some of the cardiometabolic health outcomes and bone, joint, and cognitive health. However, further studies are necessary to understand their benefits better and address existing limitations.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania; (O.F.); (A.M.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Laura Ioana Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania; (O.F.); (A.M.)
| |
Collapse
|
5
|
Khaksar S, Bigdeli M, Mohammadi R. Expression of Na +/Ca 2+ exchangers was enhanced following pre-treatment of olive leaf extract and olive oil in animal model of ischemic stroke. Int J Neurosci 2024:1-15. [PMID: 38153337 DOI: 10.1080/00207454.2023.2300732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuroprotective role of olive and its natural products can introduce them as alternative candidates for the management of neurodegenerative diseases including stroke. The present study was designed to evaluate whether pretreatment of olive oil and leaf extract can attenuate the most important destructive processes in cerebral ischemia called excitotoxicity. MATERIAL AND METHODS The male rats were categorized into control, virgin olive oil (OVV), MCAO, MCAO + OVV (with doses of 0.25, 0.50 and 0.75 ml/kg as treatment groups), olive leaf extract, MCAO + olive leaf extract (with doses 50, 75 and 100 mg/kg as treatment groups) groups. Rats of treatment groups received gastric gavage with olive oil or leaf extract for 30 consecutive days. After pretreatment, the intraluminal filament technique was used to block middle cerebral artery (MCA) transiently. Neurological deficits, infarct volume and expression of Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) proteins were measured. RESULTS The results revealed that olive oil at doses of 0.50 and 0.75 ml/kg reduced the infarction and neurological score and upregulated NCXs expression in rat brain. In addition, olive leaf extract at doses of 75 and 100 mg/kg attenuated the infarction and neurological score and enhanced NCXs expression in rat brain. CONCLUSION These findings support the view that olive oil and leaf extract play the neuroprotective role in cerebral ischemia due to the upregulation of NCXs protein expression.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammadreza Bigdeli
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Raziyeh Mohammadi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|