1
|
Pannerchelvan S, Rios-Solis L, Wasoh H, Sobri MZM, Faizal Wong FW, Mohamed MS, Mohamad R, Halim M. Functional yogurt: a comprehensive review of its nutritional composition and health benefits. Food Funct 2024; 15:10927-10955. [PMID: 39446126 DOI: 10.1039/d4fo03671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Functional yogurt, renowned for its enhanced nutritional profile and potential health benefits, has emerged as a promising functional food. This review meticulously examines the nutritional composition of functional yogurt, highlighting its enriched content of probiotics, prebiotics, synbiotics, antioxidants, vitamins, minerals, proteins, and other bioactive compounds, which contribute to its health-promoting properties. Functional yogurt has positively affected digestive health, immune function, metabolic health, and mental well-being. It benefits digestive health by alleviating diarrhoeal symptoms, constipation, colon cancer, irritable bowel syndrome (IBS), Helicobacter pylori infection, and digestive-related allergies. Moreover, the immune-boosting properties of functional yogurt play a pivotal role in reducing the risk of infections and inflammation. In addition, functional yogurt has the potential to improve metabolic health, leading to decreased cholesterol levels and enhanced blood sugar regulation. Emerging research also suggests functional yogurt may positively influence mood, behavior, and cognitive function. Functional yogurt is a valuable addition to the human diet, holding significant implications for public health. In addition to its numerous health benefits, functional yogurt also faces limitations, such as the stability of functional compounds, sensory alterations, potential digestive discomfort, and inconsistent efficacy across populations, highlighting the need for further research and optimization.
Collapse
Affiliation(s)
- Sangkaran Pannerchelvan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Leonardo Rios-Solis
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, 6.07, WC1E 6BT, United Kingdom
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamad Zulfazli Mohd Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Barkaoui S, Madureira J, Boudhrioua N, Cabo Verde S. Berries: effects on health, preservation methods, and uses in functional foods: a review. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Natesan K, Srivalli T, Mohan H, Jayaprakash A, Ramalingam V. UPLC-ESI-Q-TOF-MS E-based metabolomics analysis of Acer mono sap and evaluation of osteogenic activity in mouse osteoblast cells. Food Funct 2022; 13:13002-13013. [PMID: 36449013 DOI: 10.1039/d2fo01948e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Investigation of phytochemicals and bioactive molecules is tremendously vital for the applications of new plant resources in chemistry, food, and medicine. In this study, the chemical profiling of sap of Acer mono (SAM), a Korean syrup known for its anti-osteoporosis effect, was performed using UPLC-ESI-Q-TOF-MSE analysis. A total of 23 compounds were identified based on the mass and fragmentation characteristics and most of the compounds have significant biomedical applications. The in vitro antioxidant assessment of SAM indicated excellent activity by scavenging DPPH and ABTS-free radicals and were found to be 23.35 mg mL-1 and 29.33 mg mL-1, respectively, as IC50 concentrations. As well, the in vitro proliferation effect of the SAM was assessed against mouse MC3T3-E1 cells, and the results showed that the SAM enhanced the proliferation of the cells, and 12.5 mg mL-1 and 25 mg mL-1 of SAM were selected for osteogenic differentiation. The morphological analysis clearly evidenced the SAM enhanced the osteogenic activity in MC3T3-E1 cells by the increased deposition of extracellular calcium and nodule formation. Moreover, the qRT-PCR analysis confirmed the increased expression of osteoblast marker gene expression including ALP, osteocalcin, osteopontin, collagen1α1, Runx2, and osterix in SAM-treated MC3T3-E1 cells. Together, these results suggest that SAM possesses osteogenic effects and can be used for bone regeneration and bone loss-associated diseases such as osteoporosis.
Collapse
Affiliation(s)
- Karthi Natesan
- School of Allied Health Sciences, REVA University, Bengaluru, India
| | - Thimmarayan Srivalli
- PG and Research Department of Biochemistry, Scared Heart College (Autonomous), Tirupattur - 635601, Tamil Nadu, India (Affiliated to Thiruvalluvar University, Serkkadu, Vellore - 632115, Tamil Nadu, India)
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Arul Jayaprakash
- PG and Research Department of Biochemistry, Scared Heart College (Autonomous), Tirupattur - 635601, Tamil Nadu, India (Affiliated to Thiruvalluvar University, Serkkadu, Vellore - 632115, Tamil Nadu, India)
| | - Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
4
|
Sarwar A, Al-Dalali S, Aziz T, Yang Z, Ud Din J, Khan AA, Daudzai Z, Syed Q, Nelofer R, Qazi NU, Jian Z, Dablool AS. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. J Fungi (Basel) 2022; 8:jof8070713. [PMID: 35887468 PMCID: PMC9317841 DOI: 10.3390/jof8070713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 01/12/2023] Open
Abstract
Fermentation of available sugars in milk by yogurt starter culture initially and later by Saccharomyces boulardii (Probiotic yeast) improves the bioavailability of nutrients and produces bioactive substances and volatile compounds that enhance consumer acceptability. The combination of S. boulardii, a unique species of probiotic yeast, and inulin, an exopolysaccharide used as a prebiotic, showed remarkable probiotic and hydrocolloid properties in dairy products. The present study was designed to study the effect of fermentation and storage on antioxidant and volatile capacities of probiotic and synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), compared with the probiotic and control plain yogurt. All samples were stored at 4 °C, and during these four weeks, they were analyzed in terms of their antioxidant and volatile compounds. The synbiotic yogurt samples having inulin and S. boulardii displayed significantly higher DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical activity values and more values of TPC (total phenol contents) than control plain yogurt. A total of 16 volatile compounds were identified in S5-syn2 and S4-syn1.5, while S3-syn1 and S2-P had 14, compared with the control S1-C plain yogurt samples, which had only 6. The number of volatile compounds increased with the increasing concentration of inulin throughout the storage period. Therefore, this novel synbiotic yogurt with higher antioxidant and volatile compounds, even with chilling storage conditions, will be a good choice for consumer acceptability.
Collapse
Affiliation(s)
- Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Haripur 22621, Pakistan
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Correspondence: ; Tel.: +86-10-6898-4870
| | - Jalal Ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan;
| | - Zubaida Daudzai
- Department of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Quratulain Syed
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Rubina Nelofer
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Nazif Ullah Qazi
- Department of Microbiology, University of Swabi, Ambar 94640, Pakistan;
| | - Zhang Jian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia;
| |
Collapse
|
5
|
Pokimica B, Popović T, Petrović-Oggiano G, Šarac I, Glibetić M, Takić M. Lactate content, total polyphenols and antioxidant activity of selected commercial yogurts from the Serbian market. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-38791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
One of the most popular dairy products worldwide is yogurt, which flavor is highly influenced by lactic acid content. Yogurts with fruit preparations contain polyphenols, secondary plant metabolites with proven antioxidant properties. As there is no data regarding neither lactate nor polyphenol content in commercial yogurts in Serbia, this study aimed to determine lactate and polyphenol levels, as well as antioxidant activity in selected yogurts. A total of 15 plain and 5 fruit yogurts with strawberry preparations were analyzed. Lactate contents were from 0.83 to 1.33%. Three plain yogurts in plastic containers differed in lactate content. There was no difference in lactate content among the same plain yogurts packed in plastic and Tetra Pack containers. Fruit yogurts with strawberry preparations differed in total polyphenol content in the range from 6.84 to 29.11mg GAE/100 g and antioxidant properties were determined by reducing power test (from 0.22 to 0.79) and DPPH assay (from 28.13 to 87.23%), while there was no difference regarding lactate. Our results provided new information about the levels of lactate, total polyphenols and antioxidant activity of selected commercial yogurts available on the Serbian market.
Collapse
|
6
|
Pokimica B, Popović T, Petrović-Oggiano G, Šarac I, Glibetić M, Takić M. Lactate content, total polyphenols and antioxidant activity of selected commercial yogurts from the Serbian market. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-38791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the most popular dairy products worldwide is yogurt, which flavor is highly influenced by lactic acid content. Yogurts with fruit preparations contain polyphenols, secondary plant metabolites with proven antioxidant properties. As there is no data regarding neither lactate nor polyphenol content in commercial yogurts in Serbia, this study aimed to determine lactate and polyphenol levels, as well as antioxidant activity in selected yogurts. A total of 15 plain and 5 fruit yogurts with strawberry preparations were analyzed. Lactate contents were from 0.83 to 1.33%. Three plain yogurts in plastic containers differed in lactate content. There was no difference in lactate content among the same plain yogurts packed in plastic and Tetra Pack containers. Fruit yogurts with strawberry preparations differed in total polyphenol content in the range from 6.84 to 29.11mg GAE/100 g and antioxidant properties were determined by reducing power test (from 0.22 to 0.79) and DPPH assay (from 28.13 to 87.23%), while there was no difference regarding lactate. Our results provided new information about the levels of lactate, total polyphenols and antioxidant activity of selected commercial yogurts available on the Serbian market.
Collapse
|
7
|
Kamel DG, Hammam AR, Alsaleem KA, Osman DM. Addition of inulin to probiotic yogurt: Viability of probiotic bacteria ( Bifidobacterium bifidum) and sensory characteristics. Food Sci Nutr 2021; 9:1743-1749. [PMID: 33747485 PMCID: PMC7958560 DOI: 10.1002/fsn3.2154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The objective of this work was to study the effect of different concentrations of inulin (0.2, 0.4, and 0.6%) on the viability of probiotic bacteria (Bifidobacterium bifidum) and sensory characteristics of probiotic yogurt. The yogurt was manufactured with Lactobacillus delbruckii ssp. bulgaricus (Lb), Streptococcus thermophilus (St), and Bifidobacterium bifidum (Bb). Raw milk was received, heated to 90°C, and divided into 4 aliquots portions. All portions were inoculated with 5.11 log cfu of Lb and St combined and 5 log cfu of Bb per kg of milk. The first portion was utilized as control (T1) while 0.2, 0.4, and 0.6% of inulin were added to the second (T2), third (T3), and fourth (T4) portions, respectively. All treatments were incubated at 40°C until a pH of 4.6 was reached. Subsequently, the yogurt was cooled and stored at 4°C for 16 days. Titratable acidity, total bacterial count (TBC), Bb count, yeast count, mold count, and sensory evaluation were determined during the storage. The results showed that the addition of inulin and the storage period have significant effects (p < .05) on the titratable acidity of the yogurt. The storage of control was ended after 8 days at 4°C due to the growth of molds on the surface of the samples. The TBC decreased (p < .05) over time in control from 8.28 to 7.97 log cfu/g. It was also decreased (p < .05) with increasing the concentration of inulin. However, the addition of inulin increased (p < .05) the viability of Bb during the storage, as well as, acted as an antimicrobial against molds in T2, T3, and T4. Additionally, there were no significant differences (p > .05) in the sensory evaluation of all treatments. We conclude that inulin can be utilized in the manufacturing of probiotic yogurt as a prebiotic, which, inturn, enhances the growth of Bb and increase the shelf-life.
Collapse
Affiliation(s)
- Dalia G. Kamel
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Ahmed R.A. Hammam
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
| | - Khalid A. Alsaleem
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
- Department of Food Science and Human NutritionCollege of Agriculture and Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| | - Dina M. Osman
- Dairy Science DepartmentFaculty of AgricultureAssiut UniversityAssiutEgypt
| |
Collapse
|
8
|
Sarwar A, Aziz T, Al-Dalali S, Zhao X, Zhang J, Ud Din J, Chen C, Cao Y, Yang Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019; 8:E468. [PMID: 31658700 PMCID: PMC6835504 DOI: 10.3390/foods8100468] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces boulardii is a unique species of yeast previously characterized as a probiotic strain (CNCM I-745) among a few probiotic yeasts reported to date. Inulin is one of the most common prebiotics that exhibit twisted hydrocolloidal properties in dairy products. The present study was designed to develop a synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), comparing with the probiotic and control plain yogurts. Microrheological, microstructural, microbiological, sensory properties, and volatile compounds of the yogurt samples were evaluated. Microrheological analysis showed that addition of inulin to yogurt slightly reduced the values of G' and G″, while solid-liquid balance (SLB) values confirmed more solid properties of the synbiotic yogurt (0.582~0.595) than the plain yogurt (0.503~0.518). A total of 18 volatile compounds were identified in the synbiotic yogurt, while only five and six compounds were identified in plain and probiotic yogurts, respectively. Physiochemical parameters such as pH, acidity, and protein content were in the normal range (as with the control), while fat content in the synbiotic yogurt decreased significantly. Addition of 1% inulin not only reduced syneresis but also maintained viability of S. boulardii after 28 days of storage. Microstructural and microrheological studies confirmed the dense, compressed, homogeneous structure of the synbiotic yogurt. Thus, addition of inulin improved the textural and sensory properties of the synbiotic yogurt, as well as survival of S. boulardii with viable count above 6.0 log CFU/g in yogurt, as generally required for probiotics. Therefore, novel synbiotic yogurt with desirable quality was developed as an effective carrier for delivery of the probiotic yeast exerting its beneficial health effects.
Collapse
Affiliation(s)
- Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Sam Al-Dalali
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiao Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jalal Ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chao Chen
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| | - Yongqiang Cao
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| |
Collapse
|
9
|
Peker H, Arslan S. Effect of Olive Leaf Extract on the Quality of Low Fat Apricot Yogurt. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hande Peker
- Department of Food Engineering, Faculty of Engineering; Pamukkale University, 20070 Kınıklı; Denizli Turkey
| | - Seher Arslan
- Department of Food Engineering, Faculty of Engineering; Pamukkale University, 20070 Kınıklı; Denizli Turkey
| |
Collapse
|
10
|
Laoretani D, Fernández M, Crapiste G, Nolasco S. Effect of Drying Operating Conditions on Canola Oil Tocopherol Content. Antioxidants (Basel) 2014; 3:190-9. [PMID: 26784866 PMCID: PMC4665492 DOI: 10.3390/antiox3020190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/19/2014] [Accepted: 03/21/2014] [Indexed: 12/02/2022] Open
Abstract
The aim of this work was to evaluate two operating parameters of seed drying (temperature and initial moisture content) on the tocopherol content of canola oil. The raw material was characterized by moisture, oil, protein, crude fiber and ash content. Seeds at 13.6% and 22.7% moisture content (dry basis, db) were dried at temperatures in the range of 35–100 °C to a safe storage moisture of 7% db. Oil was extracted from each treated sample. The oil extracted from the samples dried at the extreme temperatures was analyzed by means of the acidity value, peroxide index and fatty acid composition, finding no significant differences among treatments or among untreated and treated samples. Tocopherol contents in the oils obtained for all the assayed temperatures were determined. Differences were found for the samples with 22.7% (db) initial moisture content. Except at 35 °C, temperature affected negatively the oil tocopherol content. However, when 13.6% (db) moisture seeds were processed, no significant differences were observed in the amount of this minor oil component among assays.
Collapse
Affiliation(s)
- Daniela Laoretani
- TECSE-Facultad de Ingeniería-UNCPBA, Av. Del Valle 5737, Olavarría, Buenos Aires 7400, Argentina.
| | - María Fernández
- TECSE-Facultad de Ingeniería-UNCPBA, Av. Del Valle 5737, Olavarría, Buenos Aires 7400, Argentina.
- CIFICEN (UNCPBA-CONICET), Pinto 399, Tandil, Buenos Aires 7000, Argentina.
| | - Guillermo Crapiste
- PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, CC 717, Bahía Blanca, Buenos Aires 8000, Argentina.
| | - Susana Nolasco
- TECSE-Facultad de Ingeniería-UNCPBA, Av. Del Valle 5737, Olavarría, Buenos Aires 7400, Argentina.
| |
Collapse
|