1
|
Venugopal A, Iyer M, Narayanasamy A, Ravimanickam T, Gopalakrishnan AV, Yadav MK, Kumar NS, Vellingiri B. Association of Biochemical Parameters and Screening for Mutations in the MCU Gene in Alzheimer's Disease Patients. Mol Neurobiol 2024; 61:4116-4128. [PMID: 38064106 DOI: 10.1007/s12035-023-03820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/08/2023] [Indexed: 01/23/2024]
Abstract
The most prevalent form of dementia, Alzheimer's disease (AD) is a chronic illness that is on the rise among the geriatric population. Even though research into its biochemical, genetic, and cytogenetic pathways has advanced, its aetiology is still unclear and complex. In this study, we recruited sixty-eight participants diagnosed with AD where the cytogenetic, biochemical parameters and genetic mutations were analysed. Our results revealed chromosomal aberrations such as aneuploidies in the peripheral blood of Alzheimer's disease patients. Biochemical parameters revealed no statistical significance in the study though a pattern could be observed in the serum levels. Further few novel mutations at the c.21 C > T, c.56G > A were observed in the MCU gene of mitochondrial calcium uniporter. All these findings reveal the need for a larger cohort study to gain a better and more detailed understanding of the aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Anila Venugopal
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Center for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education, 641 021, Coimbatore, Tamil Nadu, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, 151401, Bathinda, Punjab, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, 641046, Coimbatore, Tamil Nadu, India
| | - T Ravimanickam
- Department of Zoology, School of Science, Tamil Nadu Open University, 600015, Chennai, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, 632014, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, 151401, Bathinda, Punjab, India
| | | | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India.
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, 151401, Bathinda, Punjab, India.
| |
Collapse
|
2
|
Wu MC, Gao YH, Zhang C, Ma BT, Lin HR, Jiang JY, Xue MF, Li S, Wang HB. Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans. BMC Complement Med Ther 2023; 23:386. [PMID: 37891552 PMCID: PMC10612239 DOI: 10.1186/s12906-023-04183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer's disease. METHODS Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine. RESULTS We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit β-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of β-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids. CONCLUSIONS Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer's disease based on neuroprotective effects.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Ye-Hui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Bo-Tian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Hong-Ru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jin-Yun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Meng-Fan Xue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Shan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| | - Hong-Bing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Chauhan P, Wadhwa K, Singh G. Caenorhabditis elegans as a model system to evaluate neuroprotective potential of nano formulations. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1018754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of neurodegenerative illnesses on society is significant, but the mechanisms leading to neuronal malfunction and death in these conditions remain largely unknown despite identifying essential disease genes. To pinpoint the mechanisms behind the pathophysiology of neurodegenerative diseases, several researchers have turned to nematode C. elegans instead of using mammals. Since C. elegans is transparent, free-living, and amenable to culture, it has several benefits. As a result, all the neurons in C. elegans can be easily identified, and their connections are understood. Human proteins linked to Neurodegeneration can be made to express in them. It is also possible to analyze how C. elegans orthologs of the genes responsible for human neurodegenerative diseases function. In this article, we focused at some of the most important C. elegans neurodegeneration models that accurately represent many elements of human neurodegenerative illness. It has been observed that studies using the adaptable C. elegans have helped us in better understanding of human diseases. These studies have used it to replicate several aspects of human neurodegeneration. A nanotech approach involves engineering materials or equipments interacting with biological systems at the molecular level to trigger physiological responses by increasing stimulation, responding, and interacting with target sites while minimizing side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Nanotechnologies are being used to treat neurological disorders and deliver nanoscale drugs. This review explores the current and future uses of these nanotechnologies as innovative therapeutic modalities in treatment of neurodegenerative diseases using C elegans as an experimental model.
Collapse
|
4
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
5
|
Siervo M, Shannon OM, Llewellyn DJ, Stephan BC, Fontana L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic Biol Med 2021; 176:105-117. [PMID: 34562607 DOI: 10.1016/j.freeradbiomed.2021.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The traditional Mediterranean diet (MedDiet), rich in minimally processed plant foods and fish, has been widely recognized to be one of the healthiest diets. Data from multiple randomized clinical trials have demonstrated its powerful effect against oxidative stress, inflammation and the development and progression of cardiovascular disease, type 2 diabetes, and other metabolic conditions that play a crucial role in the pathogenesis of neurodegenerative diseases. The protecting effects of the MedDiet against cognitive decline have been investigated in several observational and experimental studies. Data from observational studies suggest that the MedDiet may represent an effective dietary strategy for the early prevention of dementia, although these findings require further substantiation in clinical trials which have so far produced inconclusive results. Moreover, as we discuss in this review, accumulating data emphasizes the importance of: 1) maintaining an optimal nutritional and metabolic status for the promotion of healthy cognitive aging, and 2) implementing cognition-sparing dietary and lifestyle interventions during early time-sensitive windows before the pathological cascades turn into an irreversible state. In summary, components of the MedDiet pattern, such as essential fatty acids, polyphenols and vitamins, have been associated with reduced oxidative stress and the current evidence from observational studies seems to assign to the MedDiet a beneficial role in promoting brain health; however, results from clinical trials have been inconsistent. While we advocate for longitudinal analyses and for larger and longer clinical trials to be conducted, we assert our interim support to the use of the MedDiet as a protective dietary intervention for cognitive function based on its proven cardiovascular and metabolic benefits.
Collapse
Affiliation(s)
- Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK; Alan Turing Institute, London, UK
| | - Blossom Cm Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| |
Collapse
|
6
|
Methods to Analyse Time-to-Event Data: The Kaplan-Meier Survival Curve. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2290120. [PMID: 34594473 PMCID: PMC8478547 DOI: 10.1155/2021/2290120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Studies performed in the field of oxidative medicine and cellular longevity frequently focus on the association between biomarkers of cellular and molecular mechanisms of oxidative stress as well as of aging, immune function, and vascular biology with specific time to event data, such as mortality and organ failure. Indeed, time-to-event analysis is one of the most important methodologies used in clinical and epidemiological research to address etiological and prognostic hypotheses. Survival data require adequate methods of analyses. Among these, the Kaplan-Meier analysis is the most used one in both observational and interventional studies. In this paper, we describe the mathematical background of this technique and the concept of censoring (right censoring, interval censoring, and left censoring) and report some examples demonstrating how to construct a Kaplan-Meier survival curve and how to apply this method to provide an answer to specific research questions.
Collapse
|
7
|
Ryan KC, Ashkavand Z, Sarasija S, Laboy JT, Samarakoon R, Norman KR. Increased mitochondrial calcium uptake and concomitant mitochondrial activity by presenilin loss promotes mTORC1 signaling to drive neurodegeneration. Aging Cell 2021; 20:e13472. [PMID: 34499406 PMCID: PMC8520713 DOI: 10.1111/acel.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic dysfunction and protein aggregation are common characteristics that occur in age‐related neurodegenerative disease. However, the mechanisms underlying these abnormalities remain poorly understood. We have found that mutations in the gene encoding presenilin in Caenorhabditis elegans, sel‐12, results in elevated mitochondrial activity that drives oxidative stress and neuronal dysfunction. Mutations in the human presenilin genes are the primary cause of familial Alzheimer's disease. Here, we demonstrate that loss of SEL‐12/presenilin results in the hyperactivation of the mTORC1 pathway. This hyperactivation is caused by elevated mitochondrial calcium influx and, likely, the associated increase in mitochondrial activity. Reducing mTORC1 activity improves proteostasis defects and neurodegenerative phenotypes associated with loss of SEL‐12 function. Consistent with high mTORC1 activity, we find that SEL‐12 loss reduces autophagosome formation, and this reduction is prevented by limiting mitochondrial calcium uptake. Moreover, the improvements of proteostasis and neuronal defects in sel‐12 mutants due to mTORC1 inhibition require the induction of autophagy. These results indicate that mTORC1 hyperactivation exacerbates the defects in proteostasis and neuronal function in sel‐12 mutants and demonstrate a critical role of presenilin in promoting neuronal health.
Collapse
Affiliation(s)
- Kerry C. Ryan
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Jocelyn T. Laboy
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Kenneth R. Norman
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| |
Collapse
|
8
|
Jurcau A, Simion A. Oxidative Stress in the Pathogenesis of Alzheimer's Disease and Cerebrovascular Disease with Therapeutic Implications. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:94-108. [PMID: 32124703 DOI: 10.2174/1871527319666200303121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The significant gain in life expectancy led to an increase in the incidence and prevalence of dementia. Although vascular risk factors have long and repeatedly been shown to increase the risk of Alzheimer's Disease (AD), translating these findings into effective preventive measures has failed. In addition, the finding that incident ischemic stroke approximately doubles the risk of a patient to develop AD has been recently reinforced. Current knowledge and pathogenetic hypotheses of AD are discussed. The implication of oxidative stress in the development of AD is reviewed, with special emphasis on its sudden burst in the setting of acute ischemic stroke and the possible link between this increase in oxidative stress and consequent cognitive impairment. Current knowledge and future directions in the prevention and treatment of AD are discussed outlining the hypothesis of a possible beneficial effect of antioxidant treatment in acute ischemic stroke in delaying the onset/progression of dementia.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurology Ward, Oradea, Romania
| | - Aurel Simion
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurological Rehabilitation Ward, Oradea, Romania
| |
Collapse
|
9
|
Ullah H, Di Minno A, Santarcangelo C, Khan H, Daglia M. Improvement of Oxidative Stress and Mitochondrial Dysfunction by β-Caryophyllene: A Focus on the Nervous System. Antioxidants (Basel) 2021; 10:antiox10040546. [PMID: 33915950 PMCID: PMC8066981 DOI: 10.3390/antiox10040546] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial dysfunction results in a series of defective cellular events, including decreased adenosine triphosphate (ATP) production, enhanced reactive oxygen species (ROS) output, and altered proteastasis and cellular quality control. An enhanced output of ROS may damage mitochondrial components, such as mitochondrial DNA and elements of the electron transport chain, resulting in the loss of proper electrochemical gradient across the mitochondrial inner membrane and an ensuing shutdown of mitochondrial energy production. Neurons have an increased demand for ATP and oxygen, and thus are more prone to damage induced by mitochondrial dysfunction. Mitochondrial dysfunction, damaged electron transport chains, altered membrane permeability and Ca2+ homeostasis, and impaired mitochondrial defense systems induced by oxidative stress, are pathological changes involved in neurodegenerative disorders. A growing body of evidence suggests that the use of antioxidants could stabilize mitochondria and thus may be suitable for preventing neuronal loss. Numerous natural products exhibit the potential to counter oxidative stress and mitochondrial dysfunction; however, science is still looking for a breakthrough in the treatment of neurodegenerative disorders. β-caryophyllene is a bicyclic sesquiterpene, and an active principle of essential oils derived from a large number of spices and food plants. As a selective cannabinoid receptor 2 (CB2) agonist, several studies have reported it as possessing numerous pharmacological activities such as antibacterial (e.g., Helicobacter pylori), antioxidant, anti-inflammatory, analgesic (e.g., neuropathic pain), anti-neurodegenerative and anticancer properties. The present review mainly focuses on the potential of β-caryophyllene in reducing oxidative stress and mitochondrial dysfunction, and its possible links with neuroprotection.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; or
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| |
Collapse
|
10
|
Koklesova L, Samec M, Liskova A, Zhai K, Büsselberg D, Giordano FA, Kubatka P, Golunitschaja O. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J 2021; 12:27-40. [PMID: 33686350 PMCID: PMC7931170 DOI: 10.1007/s13167-021-00237-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Mitochondrial injury plays a key role in the aetiopathology of multifactorial diseases exhibiting a "vicious circle" characteristic for pathomechanisms of the mitochondrial and multi-organ damage frequently developed in a reciprocal manner. Although the origin of the damage is common (uncontrolled ROS release, diminished energy production and extensive oxidative stress to life-important biomolecules such as mtDNA and chrDNA), individual outcomes differ significantly representing a spectrum of associated pathologies including but not restricted to neurodegeneration, cardiovascular diseases and cancers. Contextually, the role of predictive, preventive and personalised (PPPM/3P) medicine is to introduce predictive analytical approaches which allow for distinguishing between individual outcomes under circumstance of mitochondrial impairments followed by cost-effective targeted prevention and personalisation of medical services. Current article considers innovative concepts and analytical instruments to advance management of mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golunitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
11
|
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021; 22:ijms22042007. [PMID: 33670490 PMCID: PMC7922866 DOI: 10.3390/ijms22042007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Correspondence: (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (P.K.); (O.G.)
| |
Collapse
|
12
|
Jurcau A. The Role of Natural Antioxidants in the Prevention of Dementia-Where Do We Stand and Future Perspectives. Nutrients 2021; 13:282. [PMID: 33498262 PMCID: PMC7909256 DOI: 10.3390/nu13020282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Dementia, and especially Alzheimer's disease (AD), puts significant burden on global healthcare expenditure through its increasing prevalence. Research has convincingly demonstrated the implication of oxidative stress in the pathogenesis of dementia as well as of the conditions which increase the risk of developing dementia. However, drugs which target single pathways have so far failed in providing significant neuroprotection. Natural antioxidants, due to their effects in multiple pathways through which oxidative stress leads to neurodegeneration and triggers neuroinflammation, could prove valuable weapons in our fight against dementia. Although efficient in vitro and in animal models of AD, natural antioxidants in human trials have many drawbacks related to the limited bioavailability, unknown optimal dose, or proper timing of the treatment. Nonetheless, trials evaluating several of these natural compounds are ongoing, as are attempts to modify these compounds to achieve improved bioavailability.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, nr 1 Universitatii Street, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “Dr. G. Curteanu”, nr 12 Corneliu Coposu Street, 410469 Oradea, Romania
| |
Collapse
|
13
|
Raut S, Patel R, Al-Ahmad AJ. Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS 2021; 18:3. [PMID: 33413468 PMCID: PMC7789219 DOI: 10.1186/s12987-020-00235-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. It is an irreversible condition marked by irreversible cognitive loss, commonly attributed to the loss of hippocampal neurons due to the formation of senile plaques and neurofibrillary tangles. Although the sporadic form is the most prevalent, the presence of familial form (involving several genes such as APP, PSEN1, and PSEN2) of the disease is commonly used as a model for understanding the pathophysiology of the disease. The aim of this study is to investigate the effect of a mutation on PSEN1 and PSEN2 genes on the BBB function using induced pluripotent stem cells (iPSCs). Methods
iPSC lines from patients suffering from a familial form of Alzheimer’s disease and harboring mutations in PSEN1 or PSEN2 were used in this study and compared to a control iPSC line. Cells were differentiated into brain microvascular endothelial cells (BMECs) following established differentiation protocols. Barrier function was assessed by measuring TEER and fluorescein permeability, drug transporter activity was assessed by uptake assay, glucose uptake and metabolism assessed by cell flux analyzer, mitochondrial potential by JC-1, and lysosomal acidification by acridine orange. Results iPSC-derived BMECs from the FAD patient presenting a mutation in the PSEN1 gene showed impaired barrier function compared to the FAD patient harboring a mutation in PSEN2 and to the control group. Such impaired barrier function correlated with poor tight junction complexes and reduced drug efflux pump activity. In addition, both PSEN1 and PSEN2-BMECs displayed reduced bioenergetics, lysosomal acidification, autophagy, while showing an increase in radical oxygen species (ROS) production. Finally, PSEN1- and PSEN2-BMECs showed an elevated secretion of Aβ1–40 peptides compared to control-BMECs. Conclusions Our study reports that iPSC-derived BMECs obtained from FAD patients showed impaired barrier properties and BMEC metabolism. In particular, mutation in the PSEN1 gene was associated with a more detrimental phenotype than mutation in PSEN2, as noted by a reduced barrier function, reduced drug efflux pump activity, and diminished glucose metabolism. Therefore, assessing the contribution of genetic mutations associated with Alzheimer’s disease will allow us to better understand the contribution of the BBB in dementia, but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, 1300 South Coulter Street, Amarillo, TX, 79106, USA
| | - Ronak Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, 1300 South Coulter Street, Amarillo, TX, 79106, USA
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, 1300 South Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
14
|
Ryan KC, Ashkavand Z, Norman KR. The Role of Mitochondrial Calcium Homeostasis in Alzheimer's and Related Diseases. Int J Mol Sci 2020; 21:ijms21239153. [PMID: 33271784 PMCID: PMC7730848 DOI: 10.3390/ijms21239153] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Calcium signaling is essential for neuronal function, and its dysregulation has been implicated across neurodegenerative diseases, including Alzheimer’s disease (AD). A close reciprocal relationship exists between calcium signaling and mitochondrial function. Growing evidence in a variety of AD models indicates that calcium dyshomeostasis drastically alters mitochondrial activity which, in turn, drives neurodegeneration. This review discusses the potential pathogenic mechanisms by which calcium impairs mitochondrial function in AD, focusing on the impact of calcium in endoplasmic reticulum (ER)–mitochondrial communication, mitochondrial transport, oxidative stress, and protein homeostasis. This review also summarizes recent data that highlight the need for exploring the mechanisms underlying calcium-mediated mitochondrial dysfunction while suggesting potential targets for modulating mitochondrial calcium levels to treat neurodegenerative diseases such as AD.
Collapse
|
15
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
16
|
Alvarez J, Alvarez-Illera P, García-Casas P, Fonteriz RI, Montero M. The Role of Ca 2+ Signaling in Aging and Neurodegeneration: Insights from Caenorhabditis elegans Models. Cells 2020; 9:cells9010204. [PMID: 31947609 PMCID: PMC7016793 DOI: 10.3390/cells9010204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is a ubiquitous second messenger that plays an essential role in physiological processes such as muscle contraction, neuronal secretion, and cell proliferation or differentiation. There is ample evidence that the dysregulation of Ca2+ signaling is one of the key events in the development of neurodegenerative processes, an idea called the "calcium hypothesis" of neurodegeneration. Caenorhabditis elegans (C. elegans) is a very good model for the study of aging and neurodegeneration. In fact, many of the signaling pathways involved in longevity were first discovered in this nematode, and many models of neurodegenerative diseases have also been developed therein, either through mutations in the worm genome or by expressing human proteins involved in neurodegeneration (β-amyloid, α-synuclein, polyglutamine, or others) in defined worm tissues. The worm is completely transparent throughout its whole life, which makes it possible to carry out Ca2+ dynamics studies in vivo at any time, by expressing Ca2+ fluorescent probes in defined worm tissues, and even in specific organelles such as mitochondria. This review will summarize the evidence obtained using this model organism to understand the role of Ca2+ signaling in aging and neurodegeneration.
Collapse
|
17
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|