1
|
Maurais A, Weerapana E. A peptide-crosslinking approach identifies HSPA8 and PFKL as selective interactors of an actin-derived peptide containing reduced and oxidized methionine. RSC Chem Biol 2022; 3:1282-1289. [PMID: 36320891 PMCID: PMC9533414 DOI: 10.1039/d2cb00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 10/07/2023] Open
Abstract
The oxidation of methionine to methionine sulfoxide occurs under conditions of cellular oxidative stress, and modulates the function of a diverse array of proteins. Enzymatic systems that install and reverse the methionine sulfoxide modifications have been characterized, however, little is known about potential readers of this oxidative modification. Here, we apply a peptide-crosslinking approach to identify proteins that are able to differentially interact with reduced and oxidized methionine-containing peptides. Specifically, we generated a photo-crosslinking peptide derived from actin, which contains two sites of methionine oxidation, M44 and M47. Our proteomic studies identified heat shock proteins, including HSPA8, as selective for the reduced methionine-containing peptide, whereas the phosphofructokinase isoform, PFKL, preferentially interacts with the oxidized form. We then demonstrate that the favored interaction of PFKL with oxidized methionine is also observed in the full-length actin protein, suggesting a role of methionine oxidation in regulating the actin-PFKL interaction in cells. Our studies demonstrate the potential to identify proteins that can differentiate between reduced and oxidized methionine and thereby mediate downstream protein functions under conditions of oxidative stress. Furthermore, given that numerous sites of methionine oxidation have now been identified, these studies set the stage to identify putative readers of methionine oxidation on other protein targets.
Collapse
Affiliation(s)
- Aaron Maurais
- Department of Chemistry, Boston College Chestnut Hill MA 02467 USA
| | | |
Collapse
|
2
|
Savino RJ, Kempisty B, Mozdziak P. The Potential of a Protein Model Synthesized Absent of Methionine. Molecules 2022; 27:3679. [PMID: 35744804 PMCID: PMC9230714 DOI: 10.3390/molecules27123679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Methionine is an amino acid long thought to be essential, but only in the case of protein synthesis initiation. In more recent years, methionine has been found to play an important role in antioxidant defense, stability, and modulation of cell and protein activity. Though these findings have expanded the previously held sentiment of methionine having a singular purpose within cells and proteins, the essential nature of methionine can still be challenged. Many of the features that give methionine its newfound functions are shared by the other sulfur-containing amino acid: cysteine. While the antioxidant, stabilizing, and cell/protein modulatory functions of cysteine have already been well established, recent findings have shown a similar hydrophobicity to methionine which suggests cysteine may be able to replace methionine in all functions outside of protein synthesis initiation with little effect on cell and protein function. Furthermore, a number of novel mechanisms for alternative initiation of protein synthesis have been identified that suggest a potential to bypass the traditional methionine-dependent initiation during times of stress. In this review, these findings are discussed with a number of examples that demonstrate a potential model for synthesizing a protein in the absence of methionine.
Collapse
Affiliation(s)
- Ronald J. Savino
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| | - Bartosz Kempisty
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Histology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Paul Mozdziak
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| |
Collapse
|
3
|
Lee HM, Choi DW, Kim S, Lee A, Kim M, Roh YJ, Jo YH, Cho HY, Lee HJ, Lee SR, Tarrago L, Gladyshev VN, Kim JH, Lee BC. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sens 2022; 7:131-141. [PMID: 34936330 DOI: 10.1021/acssensors.1c01819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methionine oxidation is involved in regulating the protein activity and often leads to protein malfunction. However, tools for quantitative analyses of protein-specific methionine oxidation are currently unavailable. In this work, we developed a biological sensor that quantifies oxidized methionine in the form of methionine-R-sulfoxide in target proteins. The biosensor "tpMetROG" consists of methionine sulfoxide reductase B (MsrB), circularly permuted yellow fluorescent protein (cpYFP), thioredoxin, and protein G. Protein G binds to the constant region of antibodies against target proteins, specifically capturing them. Then, MsrB reduces the oxidized methionine in these proteins, leading to cpYFP fluorescence changes. We assessed this biosensor for quantitative analysis of methionine-R-sulfoxide in various proteins, such as calmodulin, IDLO, LegP, Sacde, and actin. We further developed an immunosorbent assay using the biosensor to quantify methionine oxidation in specific proteins such as calmodulin in animal tissues. The biosensor-linked immunosorbent assay proves to be an indispensable tool for detecting methionine oxidation in a protein-specific manner. This is a versatile tool for studying the redox biology of methionine oxidation in proteins.
Collapse
Affiliation(s)
- Hae Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Wook Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seahyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Aro Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minseo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Jo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Yeon Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Chonnam National University Medical School, Gwangju 61186, Republic of Korea
| | - Lionel Tarrago
- INRAE, Aix Marseille University, BBF, Marseille F13108, France
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byung Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:biom11081248. [PMID: 34439914 PMCID: PMC8394241 DOI: 10.3390/biom11081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
5
|
Javitt G, Cao Z, Resnick E, Gabizon R, Bulleid NJ, Fass D. Structure and Electron-Transfer Pathway of the Human Methionine Sulfoxide Reductase MsrB3. Antioxid Redox Signal 2020; 33:665-678. [PMID: 32517586 PMCID: PMC7475093 DOI: 10.1089/ars.2020.8037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: The post-translational oxidation of methionine to methionine sulfoxide (MetSO) is a reversible process, enabling the repair of oxidative damage to proteins and the use of sulfoxidation as a regulatory switch. MetSO reductases catalyze the stereospecific reduction of MetSO. One of the mammalian MetSO reductases, MsrB3, has a signal sequence for entry into the endoplasmic reticulum (ER). In the ER, MsrB3 is expected to encounter a distinct redox environment compared with its paralogs in the cytosol, nucleus, and mitochondria. We sought to determine the location and arrangement of MsrB3 redox-active cysteines, which may couple MsrB3 activity to other redox events in the ER. Results: We determined the human MsrB3 structure by using X-ray crystallography. The structure revealed that a disulfide bond near the protein amino terminus is distant in space from the active site. Nevertheless, biochemical assays showed that these amino-terminal cysteines are oxidized by the MsrB3 active site after its reaction with MetSO. Innovation: This study reveals a mechanism to shuttle oxidizing equivalents from the primary MsrB3 active site toward the enzyme surface, where they would be available for further dithiol-disulfide exchange reactions. Conclusion: Conformational changes must occur during the MsrB3 catalytic cycle to transfer oxidizing equivalents from the active site to the amino-terminal redox-active disulfide. The accessibility of this exposed disulfide may help couple MsrB3 activity to other dithiol-disulfide redox events in the secretory pathway.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural Biology and Weizmann Institute of Science, Rehovot, Israel
| | - Zhenbo Cao
- Institute of Molecular, Cellular and Systems Biology, CMVLS, University of Glasgow, Glasgow, United Kingdom
| | - Efrat Resnick
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Gabizon
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, CMVLS, University of Glasgow, Glasgow, United Kingdom
| | - Deborah Fass
- Department of Structural Biology and Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Mizusawa A, Watanabe A, Yamada M, Kamei R, Shimomura Y, Kitaura Y. BDK Deficiency in Cerebral Cortex Neurons Causes Neurological Abnormalities and Affects Endurance Capacity. Nutrients 2020; 12:nu12082267. [PMID: 32751134 PMCID: PMC7469005 DOI: 10.3390/nu12082267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism is regulated by its rate-limiting enzyme, branched-chain α-keto acid dehydrogenase (BCKDH), which is negatively regulated by BCKDH kinase (BDK). Loss of BDK function in mice and humans leads to dysregulated BCAA catabolism accompanied by neurological symptoms such as autism; however, which tissues or cell types are responsible for the phenotype has not been determined. Since BDK is highly expressed in neurons compared to astrocytes, we hypothesized that neurons are the cell type responsible for determining the neurological features of BDK deficiency. To test this hypothesis, we generated mice in which BDK deletion is restricted to neurons of the cerebral cortex (BDKEmx1-KO mice). Although BDKEmx1-KO mice were born and grew up normally, they showed clasped hind limbs when held by the tail and lower brain BCAA concentrations compared to control mice. Furthermore, these mice showed a marked increase in endurance capacity after training compared to control mice. We conclude that BDK in neurons of the cerebral cortex is essential for maintaining normal neurological functions in mice, and that accelerated BCAA catabolism in that region may enhance performance in running endurance following training.
Collapse
Affiliation(s)
- Anna Mizusawa
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Ayako Watanabe
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Minori Yamada
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Rina Kamei
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan;
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
- Correspondence:
| |
Collapse
|
7
|
Aledo JC. Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein Sci 2019; 28:1785-1796. [PMID: 31359525 DOI: 10.1002/pro.3698] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/09/2022]
Abstract
Methionine in proteins, apart from its role in the initiation of translation, is assumed to play a simple structural role in the hydrophobic core, in a similar way to other hydrophobic amino acids such as leucine, isoleucine, and valine. However, research from a number of laboratories supports the concept that methionine serves as an important cellular antioxidant, stabilizes the structure of proteins, participates in the sequence-independent recognition of protein surfaces, and can act as a regulatory switch through reversible oxidation and reduction. Despite all these evidences, the role of methionine in protein structure and function is largely overlooked by most biochemists. Thus, the main aim of the current article is not so much to carry out an exhaustive review of the many and diverse processes in which methionine residues are involved, but to review some illustrative examples that may help the nonspecialized reader to form a richer and more precise insight regarding the role-played by methionine residues in such processes.
Collapse
Affiliation(s)
- Juan C Aledo
- Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|