1
|
Xue Y, Wang T, Liu JP, Chen Q, Dai XL, Su M, Cheng YH, Chu CC, Ren YQ. Recent Trends in the Development and Application of Nano-Antioxidants for Skin-Related Disease. Antioxidants (Basel) 2024; 14:27. [PMID: 39857361 PMCID: PMC11762136 DOI: 10.3390/antiox14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Skin is a vital barrier for the human body, protecting against external environmental influences and maintaining internal homeostasis. In addition, an imbalance of oxidative stress and antioxidant mechanisms can lead to skin-related diseases. Thus, for treating skin-related diseases, antioxidant therapy may be an important strategy to alleviate these symptoms. However, traditional drug therapies have limitations in treating these conditions, such as lack of lasting effect and insufficient skin permeability. Recently, nano-antioxidants, with their good permeability, sustained-release ability, multifunctionality, and other beneficial characteristics, have showed their advances in the exploration of skin-related diseases from research on safe therapies to clinical practice. Hereby, we review the latest research and advancements in nano-antioxidants for skin-related diseases. We categorize skin-related diseases into four main groups: skin inflammatory diseases, skin damage caused by ultraviolet rays, skin wound healing, and other skin-related conditions. Additionally, we summarize the prospects and potential future directions for nano-antioxidant drugs in treating skin-related diseases.
Collapse
Affiliation(s)
- Yi Xue
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Ji-Peng Liu
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Qi Chen
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Xiao-Long Dai
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Yu-Hang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Cheng-Chao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Qing Ren
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| |
Collapse
|
2
|
Roy D, Johnson HM, Hurlock MJ, Roy K, Zhang Q, Moreau LM. Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis. Angew Chem Int Ed Engl 2024; 63:e202412542. [PMID: 39039626 DOI: 10.1002/anie.202412542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.
Collapse
Affiliation(s)
- Debashree Roy
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Matthew J Hurlock
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Kingshuk Roy
- Research Institute for Sustainable Energy, Centers for Research and Education in Science and Technology (TCG-CREST), Kolkata, 700091, India
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Zafar K, Lee A, Wang JY, Bitterman D, Kabakova M, Patel P, Kurtti A, Jagdeo J. The potential cutaneous benefits of bentonites and montmorillonites. Arch Dermatol Res 2024; 316:702. [PMID: 39438324 DOI: 10.1007/s00403-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Bentonites and montmorillonites, natural clay minerals originating from volcanic ash, possess unique properties that have traditionally been utilized in industrial applications. Recently, their potential biomedical applications, particularly in dermatology, have garnered significant interest. This review explores the cutaneous benefits of bentonites and montmorillonites, highlighting their anti-inflammatory, wound-healing, oil-absorbing, drug delivery, photoprotective, and anti-aging effects. Evidence from in vitro experiments, animal studies, and preliminary clinical trials demonstrate that these clays can significantly reduce inflammation, accelerate wound healing, absorb excess oil, enhance drug delivery, protect against ultraviolet radiation, and improve skin hydration and elasticity. Larger scale randomized clinical trials (RCTs) are needed to further establish the safety and efficacy of bentonites and montmorillonites. Given the increasing consumer demand for natural ingredients in skincare, bentonites and montmorillonites present a promising area for further research and development in dermatologic applications.
Collapse
Affiliation(s)
- Kayla Zafar
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- St. George's University School of Medicine, West Indies, Grenada
| | - Austin Lee
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Services University, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
| | - David Bitterman
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Margaret Kabakova
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Services University, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
| | - Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Alana Kurtti
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, State University of New York, Downstate Health Services University, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System - Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, State University of New York, Downstate Health Services University, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023; 13:1291. [PMID: 37759691 PMCID: PMC10526874 DOI: 10.3390/biom13091291] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
5
|
Mavridi-Printezi A, Mollica F, Lucernati R, Montalti M, Amorati R. Insight into the Antioxidant Activity of 1,8-Dihydroxynaphthalene Allomelanin Nanoparticles. Antioxidants (Basel) 2023; 12:1511. [PMID: 37627506 PMCID: PMC10451768 DOI: 10.3390/antiox12081511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Melanins are stable and non-toxic pigments with great potential as chemopreventive agents against oxidative stress for medical and cosmetic applications. Allomelanin is a class of nitrogen-free melanin often found in fungi. The artificial allomelanin obtained by the polymerization of 1,8-dihydroxynaphthalene (DHN), poly-DHN (PDHN), has been recently indicated as a better radical quencher than polydopamine (PDA), a melanin model obtained by the polymerization of dopamine (DA); however, the chemical mechanisms underlying this difference are unclear. Here we investigate, by experimental and theoretical methods, the ability of PDHN nanoparticles (PDHN-NP), in comparison to PDA-NP, to trap alkylperoxyl (ROO•) and hydroperoxyl (HOO•) radicals that are involved in the propagation of peroxidation in real conditions. Our results demonstrate that PDHN-NP present a higher antioxidant efficiency with respect to PDA-NP against ROO• in water at pH 7.4 and against mixed ROO• and HOO• in acetonitrile, showing catalytic cross-termination activity. The antioxidant capacity of PDHN-NP in water is 0.8 mmol/g (ROO• radicals quenched by 1 g of PDHN-NP), with a rate constant of 3 × 105 M-1 s-1 for each reactive moiety. Quantum-mechanical calculations revealed that, thanks to the formation of a H-bond network, the quinones in PDHN-NP have a high affinity for H-atoms, thus justifying the high reactivity of PDHN-NP with HOO• observed experimentally.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (F.M.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (F.M.)
| |
Collapse
|
6
|
Zheng J, Qi J, Song S, Yuan K, Zhang L, Zhao H, Lü J, Zhu B, Zhang Y, Hu J. An antioxidation strategy based on ultra-small nanobubbles without exogenous antioxidants. Sci Rep 2023; 13:8455. [PMID: 37231048 DOI: 10.1038/s41598-023-35766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Antioxidation is in demand in living systems, as the excessive reactive oxygen species (ROS) in organisms lead to a variety of diseases. The conventional antioxidation strategies are mostly based on the introduction of exogenous antioxidants. However, antioxidants usually have shortcomings of poor stability, non-sustainability, and potential toxicity. Here, we proposed a novel antioxidation strategy based on ultra-small nanobubbles (NBs), in which the gas-liquid interface was employed to enrich and scavenge ROS. It was found that the ultra-small NBs (~ 10 nm) exhibited a strong inhibition on oxidization of extensive substrates by hydroxyl radicals, while the normal NBs (~ 100 nm) worked only for some substrates. Since the gas-water interface of the ultra-small NBs is non-expendable, its antioxidation would be sustainable and its effect be cumulative, which is different to that using reactive nanobubbles to eliminate free radicals as the gases are consumptive and the reaction is unsustainable. Therefore, our antioxidation strategy based on ultra-small NB would provide a new solution for antioxidation in bioscience as well as other fields such as materials, chemical industry, food industry, etc.
Collapse
Affiliation(s)
- Jin Zheng
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Qi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanzhao Song
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Kaiwei Yuan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijuan Zhang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongwei Zhao
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junhong Lü
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Beien Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zhang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jun Hu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
7
|
Capecchi E, Piccinino D, Nascimben C, Tomaino E, Ceccotti Vlas N, Gabellone S, Saladino R. Biosynthesis of Novel Ascorbic Acid Esters and Their Encapsulation in Lignin Nanoparticles as Carriers and Stabilizing Systems. Int J Mol Sci 2023; 24:ijms24109044. [PMID: 37240391 DOI: 10.3390/ijms24109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
A dual-target strategy was designed for the application of lignin nanoparticles in the lipase mediated biosynthesis of novel 3-O-ethyl-L-ascorbyl-6-ferulate and 3-O-ethyl-L-ascorbyl-6-palmitate and in their successive solvent-shift encapsulation in order to improve stability and antioxidant activity against temperature and pH-dependent degradation. The loaded lignin nanoparticles were fully characterized in terms of kinetic release, radical scavenging activity and stability under pH 3 and thermal stress (60 °C), showing improved antioxidant activity and high efficacy in the protection of ascorbic acid esters from degradation.
Collapse
Affiliation(s)
- Eliana Capecchi
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Davide Piccinino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Chiara Nascimben
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Elisabetta Tomaino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Natalia Ceccotti Vlas
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Sofia Gabellone
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST-IRCCS, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Hernández D, Montalvo A, Pérez I, Charnay C, Sánchez-Espejo R, Cerezo P, Viseras C, Riela S, Cinà G, Rivera A. Antioxidant Efficacy and "In Vivo" Safety of a Bentonite/Vitamin C Hybrid. Pharmaceutics 2023; 15:pharmaceutics15041171. [PMID: 37111657 PMCID: PMC10144955 DOI: 10.3390/pharmaceutics15041171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
L-ascorbic acid (LAA), commonly known as vitamin C, is an excellent and recognized antioxidant molecule used in pharmaceutical and cosmetic formulations. Several strategies have been developed in order to preserve its chemical stability, connected with its antioxidant power, but there is little research regarding the employment of natural clays as LAA host. A safe bentonite (Bent)-which was verified by in vivo ophthalmic irritability and acute dermal toxicity assays-was used as carrier of LAA. The supramolecular complex between LAA and clay may constitute an excellent alternative, since the molecule integrity does not seem to be affected, at least from the point of view of its antioxidant capacity. The Bent/LAA hybrid was prepared and characterized through ultraviolet (UV) spectroscopy, X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis (TG/DTG) and zeta potential measurements. Photostability and antioxidant capacity tests were also performed. The LAA incorporation into Bent clay was demonstrated, as well as the drug stability due to the Bent photoprotective effect onto the LAA molecule. Moreover, the antioxidant capacity of the drug in the Bent/LAA composite was confirmed.
Collapse
Affiliation(s)
- Dayaris Hernández
- Zeolites Engineering Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana 10400, Cuba
| | - Anaela Montalvo
- Department of Drugs Technology and Control, Institute of Pharmacy and Food (IFAL), University of Havana, Havana 13600, Cuba
| | - Irela Pérez
- Department of Drugs Technology and Control, Institute of Pharmacy and Food (IFAL), University of Havana, Havana 13600, Cuba
| | - Clarence Charnay
- Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université de Montpellier, 34095 Montpellier, France
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Avda. de Las Palmeras 4, 18100 Armilla, Spain
| | - Serena Riela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Giuseppe Cinà
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Aramis Rivera
- Zeolites Engineering Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana 10400, Cuba
| |
Collapse
|
9
|
Mavridi-Printezi A, Menichetti A, Mordini D, Amorati R, Montalti M. Recent Applications of Melanin-like Nanoparticles as Antioxidant Agents. Antioxidants (Basel) 2023; 12:antiox12040863. [PMID: 37107238 PMCID: PMC10135245 DOI: 10.3390/antiox12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanosized antioxidants are highly advantageous in terms of versatility and pharmacokinetics, with respect to conventional molecular ones. Melanin-like materials, artificial species inspired by natural melanin, combine recognized antioxidant (AOX) activity with a unique versatility of preparation and modification. Due to this versatility and documented biocompatibility, artificial melanin has been incorporated into a variety of nanoparticles (NP) in order to give new platforms for nanomedicine with enhanced AOX activity. In this review article, we first discuss the chemical mechanisms behind the AOX activity of materials in the context of the inhibition of the radical chain reaction responsible for the peroxidation of biomolecules. We also focus briefly on the AOX properties of melanin-like NP, considering the effect of parameters such as size, preparation methods and surface functionalization on them. Then, we consider the most recent and relevant applications of AOX melanin-like NPs that are able to counteract ferroptosis and be involved in the treatment of important diseases that affect, e.g., the cardiovascular and nervous systems, as well as the kidneys, liver and articulations. A specific section will be dedicated to cancer treatment, since the role of melanin in this context is still very debated. Finally, we propose future strategies in AOX development for a better chemical understanding of melanin-like materials. In particular, the composition and structure of these materials are still debated, and they present a high level of variability. Thus, a better understanding of the mechanism behind the interaction of melanin-like nanostructures with different radicals and highly reactive species would be highly advantageous for the design of more effective and specific AOX nano-agents.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Mordini
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
10
|
Fragou F, Theofanous A, Deligiannakis Y, Louloudi M. Nanoantioxidant Materials: Nanoengineering Inspired by Nature. MICROMACHINES 2023; 14:383. [PMID: 36838085 PMCID: PMC9963756 DOI: 10.3390/mi14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Oxidants are very active compounds that can cause damage to biological systems under specific environmental conditions. One effective way to counterbalance these adverse effects is the use of anti-oxidants. At low concentrations, an antioxidant is defined as a compound that can delay, control, or prevent an oxidative process. Antioxidants exist in plants, soil, and minerals; therefore, nature is a rich source of natural antioxidants, such as tocopherols and polyphenols. In nature, antioxidants perform in tandem with their bio-environment, which may tune their activity and protect them from degradation. In vitro use of antioxidants, i.e., out of their biomatrix, may encounter several drawbacks, such as auto-oxidation and polymerization. Artificial nanoantioxidants can be developed via surface modification of a nanoparticle with an antioxidant that can be either natural or synthetic, directly mimicking a natural antioxidant system. In this direction, state-of-the-art nanotechnology has been extensively incorporated to overcome inherent drawbacks encountered in vitro use of antioxidants, i.e., out of their biomatrix, and facilitate the production and use of antioxidants on a larger scale. Biomimetic nanoengineering has been adopted to optimize bio-medical antioxidant systems to improve stability, control release, enhance targeted administration, and overcome toxicity and biocompatibility issues. Focusing on biotechnological sciences, this review highlights the importance of nanoengineering in developing effective antioxidant structures and comparing the effectiveness of different nanoengineering methods. Additionally, this study gathers and clarifies the different antioxidant mechanisms reported in the literature and provides a clear picture of the existing evaluation methods, which can provide vital insights into bio-medical applications.
Collapse
Affiliation(s)
- Fotini Fragou
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Annita Theofanous
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Maria Louloudi
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| |
Collapse
|
11
|
Mollica F, Lucernati R, Amorati R. Expanding the spectrum of polydopamine antioxidant activity by nitroxide conjugation. J Mater Chem B 2021; 9:9980-9988. [PMID: 34873604 DOI: 10.1039/d1tb02154k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine (PDA) materials are important due to their unique physicochemical properties and their potential as chemopreventive agents for diseases connected with oxidative stress. Although PDA has been suggested to display antioxidant activity, its efficacy is controversial and its mechanism of action is still unclear. Herein, we report that accurately purified PDA nanoparticles in water at pH 7.4 are unable to quench alkylperoxyls (ROO˙), which are the radicals responsible for the propagation of lipid peroxidation, despite PDA reacting with the model DPPH˙ and ABTS˙+ radicals. PDA nanoparticles prepared by copolymerization of dopamine with the dialkyl nitroxide 4-NH2TEMPO show instead good antioxidant activity, thanks to the ROO˙ trapping ability of the nitroxide. Theoretical calculations performed on a quinone-catechol dimer, reproducing the structural motive of PDA, indicate a reactivity with ROO˙ similar to catechol. These results suggest that PDA nanoparticles have an "onion-like" structure, with a catechol-rich core, which can be reached only by DPPH˙ and ABTS˙+, and a surface mainly represented by quinones. The importance of assessing the antioxidant activity by inhibited autoxidation studies is also discussed.
Collapse
Affiliation(s)
- Fabio Mollica
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy.
| | - Rosa Lucernati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy.
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy.
| |
Collapse
|
12
|
Essential features for antioxidant capacity of ascorbic acid (vitamin C). J Mol Model 2021; 28:1. [PMID: 34862566 DOI: 10.1007/s00894-021-04994-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Vitamin C or ascorbic acid is an indispensable micronutrient for human health found principally on citrus species such as lemon and orange fruits and vegetables. It was involved in the production of proteins such as collagen. Its biochemical mechanism is related to its antioxidant capacity; however, its function at the cellular level is still unclear. Several theoretical studies about antioxidant and redox mechanisms for ascorbic acid were suggested; however, no derivative was proposed. Thereby, an electronic study of antioxidant capacity for ascorbic acid derivatives was performed using theoretical chemistry at the DFT/ B3LYP/6-311 + + (2d,2p) level of theory. Simplified derivatives show that enol hydroxyls are more important than any other functional group. The vicinal enolic hydroxyl on β position is more important for antioxidant capacity of ascorbic than hydroxyl on α position. According to our molecular modifications, the keto-alkene compound showed the best values when compared to ascorbic acid in some molecular characteristics. No lactone derivatives have superior application potential as antioxidant when compared with ascorbic acid. Several structures are possible to be proposed and were related to spin density contributions and the increase of chemical stability. New promising structural derivatives related to ascorbic acid can be developed in the future.
Collapse
|
13
|
Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH •. A Review. Antioxidants (Basel) 2021; 10:1551. [PMID: 34679687 PMCID: PMC8533328 DOI: 10.3390/antiox10101551] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the progress made in recent years in understanding the mechanism of action of nanomaterials with antioxidant activity and in the chemical methods used to evaluate their activity. Nanomaterials represent one of the most recent frontiers in the research for improved antioxidants, but further development is hampered by a poor characterization of the ''antioxidant activity'' property and by using oversimplified chemical methods. Inhibited autoxidation experiments provide valuable information about the interaction with the most important radicals involved in the lipid oxidation, namely alkylperoxyl and hydroperoxyl radicals, and demonstrate unambiguously the ability to stop the oxidation of organic materials. It is proposed that autoxidation methods should always complement (and possibly replace) the use of assays based on the quenching of stable radicals (such as DPPH• and ABTS•+). The mechanisms leading to the inhibition of the autoxidation (sacrificial and catalytic radical trapping antioxidant activity) are described in the context of nanoantioxidants. Guidelines for the selection of the appropriate testing conditions and of meaningful kinetic analysis are also given.
Collapse
Affiliation(s)
- Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
14
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
15
|
Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L, Amorati R, Zaccheroni N. Nitroxides as Building Blocks for Nanoantioxidants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31996-32004. [PMID: 34156238 PMCID: PMC8289242 DOI: 10.1021/acsami.1c06674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitroxides are an important class of radical trapping antioxidants whose promising biological activities are connected to their ability to scavenge peroxyl (ROO•) radicals. We have measured the rate constants of the reaction with ROO• (kinh) for a series of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) derivatives as 5.1 × 106, 1.1 × 106, 5.4 × 105, 3.7 × 105, 1.1 × 105, 1.9 × 105, and 5.6 × 104 M-1 s-1 for -H, -OH, -NH2, -COOH, -NHCOCH3, -CONH(CH2)3CH3, and ═O substituents in the 4 position, with a good Marcus relationship between log (kinh) and E° for the R2NO•/R2NO+ couple. Newly synthesized Pluronic-silica nanoparticles (PluS) having nitroxide moieties covalently bound to the silica surface (PluS-NO) through a TEMPO-CONH-R link and coumarin dyes embedded in the silica core, has kinh = 1.5 × 105 M-1 s-1. Each PluS-bound nitroxide displays an inhibition duration nearly double that of a structurally related "free" nitroxide. As each PluS-NO particle bears an average of 30 nitroxide units, this yields an overall ≈60-fold larger inhibition of the PluS-NO nanoantioxidant compared to the molecular analogue. The implications of these results for the development of novel nanoantioxidants based on nitroxide derivatives are discussed, such as the choice of the best linkage group and the importance of the regeneration cycle in determining the duration of inhibition.
Collapse
Affiliation(s)
- Damiano Genovese
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Baschieri
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, 40129 Bologna, Italy
| | - Danilo Vona
- Department
of Chemistry, University of Bari, via Orabona 4, I-70126 Bari, Italy
| | - Ruxandra Elena Baboi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Fabio Mollica
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Luca Prodi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
16
|
Hashemi SF, Mehrabi M, Ehterami A, Gharravi AM, Bitaraf FS, Salehi M. In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Effect of Antioxidants on High-Temperature Stability of Renewable Bio-Oils Revealed by an Innovative Method for the Determination of Kinetic Parameters of Oxidative Reactions. Antioxidants (Basel) 2020; 9:antiox9050399. [PMID: 32397271 PMCID: PMC7278824 DOI: 10.3390/antiox9050399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Bio-oils employed for various industrial purposes, such as biodiesel production, undergo extensive oxidation and degradation during transformation processes. Therefore, it is extremely important to predict their stability at high temperature. We report herein a new procedure based on the optically detected profile of headspace O2 concentration during isotherms at 130 °C for evaluating the oxidation kinetic parameters of several bio-oil feedstocks. The slope of O2 consumption and the induction period duration were related to the oil characteristics (molecular structure, acidity, and presence of intrinsic antioxidants or metals). The increase of the induction time caused by a standardized propyl gallate addition yielded a semiquantitative value of radical generation rate. Investigated oils included used cooking oils; mono-, di-, and triglycerides from natural sources; free fatty acids; transesterified oils; and their blends. With respect to other methods, this characterization presents the advantage of disentangling and evaluating the role of both fatty acids composition and naturally occurring antioxidants, and allows the development of rational strategies for antioxidant protection of oils and of their blends.
Collapse
|
18
|
Anti-aggregation effect of Ascorbic Acid and Quercetin on aggregated Bovine Serum Albumin Induced by Dithiothreitol: Comparison of Turbidity and Soluble Protein Fraction Methods. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.4.129-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on the anti-aggregation of dithiothreitol (DTT) induced - protein is generally determined by the fraction soluble (non-aggregated) protein. While the turbidity method is commonly used in studies of anti-aggregation, in which protein is induced by heat, in this study, both methods are compared in observing the anti-aggregation activity of ascorbic acid and quercetin toward bovine serum albumin induced by DTT. The DTT is a reducing agent for protein disulfide bonds and capable of inducing protein aggregation at physiological pH and temperature. The work was performed by the formation of Bovine Serum Albumin (BSA) aggregates induced by DTT under physiological conditions, which are pH 7.4 and 37°C. The aggregated protein profile was observed using the turbidity method at the end of incubation and measuring the difference of concentration between the fraction of soluble protein before and after incubation. The measurement was carried out using a spectrophotometer UV-Vis. The results indicate that both methods show similar inhibition profiles. The potential inhibition of ascorbic acid (AA) toward BSA protein aggregation induced by DTT increased along with incubation time. While quercetin shows the highest inhibition at 12 hours but decreased at 18 hours, this study reveals that both methods can observe the anti-aggregation activity of ascorbic acid and quercetin.
Collapse
|
19
|
Konopko A, Kusio J, Litwinienko G. Antioxidant Activity of Metal Nanoparticles Coated with Tocopherol-Like Residues-The Importance of Studies in Homo- and Heterogeneous Systems. Antioxidants (Basel) 2019; 9:E5. [PMID: 31861581 PMCID: PMC7022694 DOI: 10.3390/antiox9010005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023] Open
Abstract
Functionalized nanoparticles (NPs) attract great attention in pharmacy, diagnostics, and biomedical areas due to benefits like localization and unique interactions of NPs with biocomponents of living cells. In the present paper, we prepared and characterized two kinds of gold nanoparticles (AuNPs) coated with α-tocopherol-like residues: 1A were soluble in non-polar solvents and their antioxidant activity was tested during the peroxidation of a model hydrocarbon in a homogeneous system, whereas nanoparticles 1B were soluble in polar solvents and were applied as antioxidants in micellar and liposomal systems. The effectiveness of 1A is comparable to 2,2,5,7,8-pentamethylchroman-6-ol (PMHC, an analogue of α-tocopherol). Taking the results of the kinetic measurements, we calculated an average number of 2150 chromanol residues per one NP, suggesting a thick organic coating around the metal core. In heterogeneous systems, the peroxidation of methyl linoleate dispersed in Triton X-100 micelles or DMPC liposomes resulted in the observation that 1B (545 chromanol residues per one NP) was active enough to effectively inhibit peroxidation in a micellar system, but in a liposomal system, 1B behaved as a retardant (no clear induction period). The importance of microenvironment in heterogeneous systems on the overall antioxidant activity of nanoparticles is discussed.
Collapse
Affiliation(s)
- Adrian Konopko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (A.K.); (J.K.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Jaroslaw Kusio
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (A.K.); (J.K.)
| | - Grzegorz Litwinienko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (A.K.); (J.K.)
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|