1
|
Sánchez R, Torres JE, Vico LG, Luaces P, Sanz C, Pérez AG. Molecular and Biochemical Characterization of Olive 4-Hydroxyphenyl Pyruvate Dioxygenase Involved in the Biosynthesis of Tocopherols Present in Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28270-28279. [PMID: 39668601 DOI: 10.1021/acs.jafc.4c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Olive (Olea europaea) fruit contains high amounts of tocopherols that are responsible, along with secoiridoid phenolic compounds, for most of the antioxidant and anti-inflammatory properties of virgin olive oil. This study focuses on the molecular and biochemical characterization of olive 4-hydroxyphenyl pyruvate dioxygenase (OeHPPD) catalyzing the biosynthesis of homogentisic acid, which constitutes the phenolic residue in the tocopherol molecule. OeHPPD is a cytoplasmic enzyme with a molecular weight of 49.8 kDa and a predicted tertiary structure very similar to the Arabidopsis enzyme that suggests similar catalytic mechanisms. OeHPPD has an estimated Kcat of 75.26 s-1 and catalytic efficiency (Km/Kcat) of 0.145 μM-1 s-1 with 4-hydroxyphenyl pyruvate as the substrate. The expression analysis in fruits from selected olive cultivars harvested at different ripening stages indicates that the OeHPPD gene is temporally regulated and cultivar-dependent. Moreover, the analysis of OeHPPD expression in fruits affected by drought stress suggests that HPPD is involved in olive environmental adaptation.
Collapse
Affiliation(s)
- Rosario Sánchez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Jesús Expósito Torres
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Lourdes García Vico
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Pilar Luaces
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Carlos Sanz
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Ana G Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| |
Collapse
|
2
|
Luaces P, Sánchez R, Expósito J, Pérez-Pulido AJ, Pérez AG, Sanz C. Functional and Physiological Characterization of Tyrosine Decarboxylases from Olea europaea L. Involved in the Synthesis of the Main Phenolics in Olive Fruit and Virgin Olive Oil. Int J Mol Sci 2024; 25:10892. [PMID: 39456675 PMCID: PMC11507401 DOI: 10.3390/ijms252010892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The phenolic composition of virgin olive oil (VOO) primarily depends on the phenolic content of the olive fruit. The purpose of this work was to characterize the first metabolic step in the synthesis of tyrosol (Ty) and hydroxytyrosol (HTy), whose derivatives are by far the predominant phenolics in both olive fruit and VOO. To this end, two genes encoding tyrosine/DOPA decarboxylase enzymes, OeTDC1 and OeTDC2, have been identified and functionally and physiologically characterized. Both olive TDC proteins exclusively accept aromatic amino acids with phenolic side chains, such as tyrosine and 3,4-dihydroxyphenylalanine (DOPA), as substrates to produce tyramine and dopamine, respectively. These proteins exhibited a higher affinity for DOPA than for tyrosine, and the catalytic efficiency of both proteins was greater when DOPA was used as a substrate. Both olive TDC genes showed a fairly similar expression profile during olive fruit ontogeny, with OeTDC1 consistently expressed at higher levels than OeTDC2. Expression was particularly intense during the first few weeks after fruit set, coinciding with the active accumulation of Ty and HTy derivatives. The data suggest that both olive TDCs are responsible for the initial step in the synthesis of the most important phenolics, both quantitatively and functionally, in VOO.
Collapse
Affiliation(s)
- Pilar Luaces
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain; (P.L.); (R.S.); (J.E.)
| | - Rosario Sánchez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain; (P.L.); (R.S.); (J.E.)
| | - Jesús Expósito
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain; (P.L.); (R.S.); (J.E.)
| | - Antonio J. Pérez-Pulido
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain;
| | - Ana G. Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain; (P.L.); (R.S.); (J.E.)
| | - Carlos Sanz
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain; (P.L.); (R.S.); (J.E.)
| |
Collapse
|
3
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
4
|
Gómez-Gálvez FJ, Ninot A, Rodríguez JC, Compañ SP, Andreva JU, Rubio JAG, Aragón IP, Viñuales-Andreu J, Casanova-Gascón J, Šatović Z, Lorite IJ, De la Rosa-Navarro R, Belaj A. New insights in the Spanish gene pool of olive ( Olea europaea L.) preserved ex situ and in situ based on high-throughput molecular markers. FRONTIERS IN PLANT SCIENCE 2024; 14:1267601. [PMID: 38250447 PMCID: PMC10796691 DOI: 10.3389/fpls.2023.1267601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
In Spain, several local studies have highlighted the likely presence of unknown olive cultivars distinct from the approximately 260 ones previously described in the literature. Furthermore, recent advancements in identification techniques have significantly enhanced in terms of efficacy and precision. This scenario motivated a new nationwide prospecting effort aimed at recovering and characterizing new cultivated germplasm using high-throughput molecular markers. In the present study, the use of 96 EST-SNP markers allowed the identification of a considerable amount of new material (173 new genotypes) coming from areas with low intensification of production in different regions of Spain. As a result, the number of distinct national genotypes documented in the World Olive Germplasm Bank of IFAPA, Córdoba (WOGBC-ESP046) increased to 427. Likewise, 65 and 24 new synonymy and homonymy cases were identified, respectively. This rise in the number of different national cultivars allowed to deepen the knowledge about the underlying genetic structure. The great genetic variability of Spanish germplasm was confirmed, and a new hot spot of diversity was identified in the northern regions of La Rioja and Aragon. Analysis of the genetic structure showed a clear separation between the germplasm of southern and northern-northeastern Spain and indicated a significantly higher level of admixture in the latter. Given the expansion of modern olive cultivation with only a few cultivars, this cryptic germplasm is in great danger of disappearing. This underlines the fact that maintaining as many cultivars as possible will increase the genetic variability of the olive gene pool to meet the future challenges of olive cultivation.
Collapse
Affiliation(s)
- Francisco Jesús Gómez-Gálvez
- Mejora Vegetal y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| | - Antònia Ninot
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Constantí, Tarragona, Spain
| | - Juan Cano Rodríguez
- Ingeniería y Tecnología Agroalimentaria, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Centro Venta del Llano, Mengíbar, Jaén, Spain
| | - Sergio Paz Compañ
- Olivicultura, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Javier Ugarte Andreva
- Servicio de Investigación Agraria y Sanidad Vegetal, Gobierno de La Rioja, Logroño, Spain
| | | | - Isis Pinilla Aragón
- Servicio de Investigación Agraria y Sanidad Vegetal, Gobierno de La Rioja, Logroño, Spain
| | | | | | - Zlatko Šatović
- Department of Plant Biodiversity, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Ignacio Jesús Lorite
- Mejora Vegetal y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| | - Raúl De la Rosa-Navarro
- Mejora Vegetal y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Cordoba, Spain
| | - Angjelina Belaj
- Mejora Vegetal y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
5
|
Luaces P, Expósito J, Benabal P, Pascual M, Sanz C, Pérez AG. Accumulation Patterns of Metabolites Responsible for the Functional Quality of Virgin Olive Oil during Olive Fruit Ontogeny. Antioxidants (Basel) 2023; 13:12. [PMID: 38275630 PMCID: PMC10812685 DOI: 10.3390/antiox13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The health-promoting antioxidant properties of virgin olive oil (VOO) are today considered priority targets in the new olive breeding programs. Given that these properties depend mainly on its phenolic fraction, whose origin lies in the phenolic compounds present in olive fruit, the objective of this study was to provide further insight into the accumulation dynamics of the main antioxidant compounds, including both polar phenolics and lipophilic tocopherols, during the ontogeny of the olive fruit. Data obtained show that, albeit with significant differences, all the studied genotypes share just after fruit set an intense increase in the synthesis of tyrosol and hydroxytyrosol derivatives, by far the main phenolic compounds of the olive fruit, and a subsequent steady decrease along fruit development and ripening. The accumulation dynamics of flavonoids and tocopherols were different from those of tyrosol and hydroxytyrosol derivatives, presenting a peak of synthesis just before the onset of fruit ripening, and then in general, their content decreases throughout the ripening phase. In the case of flavonoids, all genotypes also share a strong increase in the accumulation of anthocyanins in the final stages of fruit ripening, coinciding with the change in fruit color. Furthermore, the results during the fruit ripening process evidenced that the content of tyrosol and hydroxytyrosol derivatives and tocopherols in the fruit largely determines the content of these groups of compounds in the oil. The information acquired could be useful for the selection of the most suitable moment in the ontogeny of the olive fruit for the search for key genes in the biosynthesis of phenolic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Sanz
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain; (P.L.); (J.E.); (P.B.); (M.P.); (A.G.P.)
| | | |
Collapse
|
6
|
Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels 2022; 8:gels8070456. [PMID: 35877541 PMCID: PMC9316521 DOI: 10.3390/gels8070456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to design and develop a nanoemulgel formulation of Tamoxifen citrate (TAM), a water-insoluble, potent anticancer drug, using the spontaneous emulsification method to improve topical delivery, achieve high accumulation at the tumour site, and spare the healthy tissues. The oil-based selection was related to the TAM solubility, while the surfactant and co-surfactant were chosen based on the droplets’ thermodynamic stability and size. Afterwards, a pseudo-ternary phase diagram was built for the most promising formulation using two oils, olive and sesame, with a varied mix of Tween 40 as the surfactant and Trascutol HP as the co-surfactant (Smix), by the optimisation of experiments. The nanoemulsion (NE) formulations that were prepared were found to have an average droplet size of 41.77 ± 1.23 nm and 188.37 ± 3.53 nm, with suitable thermodynamic stability and physicochemical properties. Both olive and sesame oils are natural food additives due to their associated antioxidant effects; therefore, they showed no toxicity profile on breast cell lines (MCF-7, ATCC number HTB-22). The TAM-NE preparations revealed a prolonged and doublings superior cumulative percentage of in vitro release of TAM compared to TAM plain gel suspension over 24 h. The release data suggested that the Higuchi model was the best fitting kinetical model for the developed formulations of NE1, NE9, and NE18. The extended release of the drug as well as an acceptable amount of the drug permeated TAM via nanogel preparations suggested that nanoemulgel (NEG) is suitable for the topical delivery of TAM in breast cancer management. Thus, this work suggests that a nanogel of TAM can improve anticancer properties and reduce systemic adverse effects compared to a suspension preparation of TAM when applied in the treatment of breast cancer.
Collapse
|
7
|
Singular Olive Oils from a Recently Discovered Spanish North-Western Cultivar: An Exhaustive 3-Year Study of Their Chemical Composition and In-Vitro Antidiabetic Potential. Antioxidants (Basel) 2022; 11:antiox11071233. [PMID: 35883723 PMCID: PMC9311737 DOI: 10.3390/antiox11071233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, the quality and physicochemical parameters, phenolic composition, and antidiabetic potential of olive oils obtained from olives belonging to centenarian olive trees of the so-called ‘Mansa de Figueiredo’ cultivar were evaluated during three consecutive crop seasons (2017–2019). The oils produced during the three crop years were classified as extra virgin based on the quality-related indices, sensory analysis, and the genuineness-related parameters. In addition, LC-ESI-TOF MS was used to get a comprehensive characterisation of the phenolic fraction while LC-ESI-IT MS was applied for quantitation purposes. The content of phenolic compounds (ranging from 1837 to 2434 mg/kg) was significantly affected by the harvest year due to the environmental conditions and ripening index. Furthermore, although significant differences in the inhibitory effects against the α-glucosidase enzyme for the EVOOs extracted throughout the three successive years were detected, all the studied EVOOs exhibited a stronger inhibitor effect than that found for acarbose.
Collapse
|
8
|
Hamze L, Miserere A, Molina MS, Maestri D, Searles PS, Rousseaux MC. Influence of environmental growth temperature on tocopherol and sterol oil concentrations in olive fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2741-2749. [PMID: 34716600 DOI: 10.1002/jsfa.11615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tocopherols and sterols are minor components of virgin olive oils that contribute to oil quality. Based on observations at different geographical locations, it has been suggested that environmental temperature during fruit growth affects tocopherol and sterol oil concentrations in olive fruit. However, controlled experiments have not been conducted to directly assess their responses to temperature. In this study, a manipulative experiment using open-top chambers (OTCs) was performed in the field to evaluate the responses of these oil components to a moderate air temperature increase during oil accumulation in young trees of two olive cultivars (Arbequina, Coratina). The two temperature levels in the OTCs were a control about 1 °C above ambient temperature (T0) and a heated treatment (T+) with a target temperature of 4 °C above T0. RESULTS Total tocopherol and sterol oil concentrations in olive fruit were generally higher in the T+ temperature treatment than in the control at the end of the oil accumulation period. The increase in total tocopherols in T+ appeared to be related to a decrease in fruit oil concentration with heating. Individual sterols showed both significant increases and decreases due to T+, and some differences in response occurred between the two cultivars. CONCLUSION These findings provide evidence that growth temperature affects tocopherol and sterol oil concentrations in olive fruit at the end of the oil accumulation period. Cultivars should be carefully chosen for new olive-growing regions, and the results could be relevant for global warming scenarios in existing growing regions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leila Hamze
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
| | - Andrea Miserere
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
- Departamento de Ciencias y Tecnologías Aplicadas (DACTAPAyU), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - M Sol Molina
- Estación Experimental Agropecuaria (EEA) Catamarca, Instituto Nacional de Tecnología Agropecuaria (INTA), Valle Viejo, Argentina
| | - Damian Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Peter S Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
| | - M Cecilia Rousseaux
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
- Departamento de Ciencias Exactas, Físicas y Naturales (DACEFyN), Universidad Nacional de La Rioja, La Rioja, Argentina
| |
Collapse
|
9
|
Pozzetti L, Ferrara F, Marotta L, Gemma S, Butini S, Benedusi M, Fusi F, Ahmed A, Pomponi S, Ferrari S, Perini M, Ramunno A, Pepe G, Campiglia P, Valacchi G, Carullo G, Campiani G. Extra Virgin Olive Oil Extracts of Indigenous Southern Tuscany Cultivar Act as Anti-Inflammatory and Vasorelaxant Nutraceuticals. Antioxidants (Basel) 2022; 11:antiox11030437. [PMID: 35326088 PMCID: PMC8944769 DOI: 10.3390/antiox11030437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-κB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects.
Collapse
Affiliation(s)
- Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Francesca Ferrara
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Ludovica Marotta
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Serena Pomponi
- Società Agricola Olivicoltori delle Colline del Cetona Società Cooperativa, 53100 Siena, Italy;
| | | | - Matteo Perini
- Fondazione Emund Mach, 38098 San Michele all’Adige (TN), Italy;
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA;
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
- Correspondence: (G.C.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
- Correspondence: (G.C.); (G.C.)
| |
Collapse
|
10
|
Sabbadini S, Capocasa F, Battino M, Mazzoni L, Mezzetti B. Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Hernández ML, Sicardo MD, Belaj A, Martínez-Rivas JM. The Oleic/Linoleic Acid Ratio in Olive ( Olea europaea L.) Fruit Mesocarp Is Mainly Controlled by OeFAD2-2 and OeFAD2-5 Genes Together With the Different Specificity of Extraplastidial Acyltransferase Enzymes. FRONTIERS IN PLANT SCIENCE 2021; 12:653997. [PMID: 33763103 PMCID: PMC7982730 DOI: 10.3389/fpls.2021.653997] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 05/04/2023]
Abstract
Fatty acid composition of olive oil has an important effect on the oil quality to such an extent that oils with a high oleic and low linoleic acid contents are preferable from a nutritional and technological point of view. In the present work, we have first studied the diversity of the fatty acid composition in a set of eighty-nine olive cultivars from the Worldwide Olive Germplasm Bank of IFAPA Cordoba (WOGBC-IFAPA), and in a core collection (Core-36), which includes 28 olive cultivars from the previously mentioned set. Our results indicate that oleic and linoleic acid contents displayed the highest degree of variability of the different fatty acids present in the olive oil of the 89 cultivars under study. In addition, the independent study of the Core-36 revealed two olive cultivars, Klon-14 and Abou Kanani, with extremely low and high linoleic acid contents, respectively. Subsequently, these two cultivars were used to investigate the specific contribution of different fatty acid desaturases to the linoleic acid content of mesocarp tissue during olive fruit development and ripening. Fatty acid desaturase gene expression levels, together with lipid analysis, suggest that not only OeFAD2-2 and OeFAD2-5 but also the different specificities of extraplastidial acyltransferase enzymes are responsible for the variability of the oleic/linoleic acid ratio in olive cultivars. All this information allows for an advancement in the knowledge of the linoleic acid biosynthesis in different olive cultivars, which can impact olive breeding programs to improve olive oil quality.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: M. Luisa Hernández,
| | - M. Dolores Sicardo
- Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | | | - José M. Martínez-Rivas
- Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
- José M. Martínez-Rivas,
| |
Collapse
|
12
|
Reboredo-Rodríguez P, Olmo-García L, Figueiredo-González M, González-Barreiro C, Carrasco-Pancorbo A, Cancho-Grande B. Effect of olive ripening degree on the antidiabetic potential of biophenols-rich extracts of Brava Gallega virgin olive oils. Food Res Int 2020; 137:109427. [PMID: 33233109 DOI: 10.1016/j.foodres.2020.109427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
The diet management is imperative to anticipate risk factors that favour the development of diseases; indeed, the intake of virgin olive oil could be an alternative natural source of α-glucosidase enzyme inhibitors, which delay the digestion rate of carbohydrates. Consequently, the impact of diabetes mellitus (DM) could be diminished. Extra Virgin Olive Oils (EVOO) were elaborated from Galician autochthonous variety 'Brava Gallega' with olives selected at three different degree of ripeness (ripening index, RI: 1.4, 3.0, 5.5) in order to assess the effect of maturation on overall chemical composition, sensory quality, and enzyme inhibition. The phenolic profile of the EVOOs determined by LC-ESI-IT-MS exhibited quantitative differences as ripening advanced; for example oleocanthal, tyrosol, luteolin and apigenin concentrations were higher in the overripe olive oil (RI 5.5). Anyway, the phenolic extracts (from every tested RI) were more active than acarbose. In particular, those obtained from the most mature olives displayed the most powerful inhibitory activity (IC50 value of 143 µg of dry extract/mL). In addition, the significant effect of these compounds (i.e. luteolin, apigenin, tyrosol and oleocanthal) on the inhibitory activity of the olive oil extracts was demonstrated. Our results suggest that, regardless of RI, the inhibitory activity of 'Brava Gallega' olive oils could represent a valuable strategy for reinforcing the health claim of olive oil for phenolic compounds.
Collapse
Affiliation(s)
- P Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - L Olmo-García
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain.
| | - M Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain.
| | - C González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - A Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - B Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
13
|
Wen Y, Xu L, Xue C, Jiang X, Wei Z. Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods. Molecules 2020; 25:molecules25215076. [PMID: 33139648 PMCID: PMC7662938 DOI: 10.3390/molecules25215076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
The consumption of vegetable oil is an important way for the body to obtain tocols. However, the impact of oil types and grades on the tocopherol and tocotrienol contents in vegetable oils is unclear. In this study, nine types of traditional edible oils and ten types of self-produced new types of vegetable oil were used to analyze eight kinds of tocols. The results showed that the oil types exerted a great impact on the tocol content of traditional edible oils. Soybean oils, corn oils, and rapeseed oils all could be well distinguished from sunflower oils. Both sunflower oils and cotton seed oils showed major differences from camellia oils as well as sesame oils. Among them, rice bran oils contained the most abundant types of tocols. New types of oil, especially sacha inchi oil, have provided a new approach to obtaining oils with a high tocol content. Oil refinement leads to the loss of tocols in vegetable oil, and the degree of oil refinement determines the oil grade. However, the oil grade could not imply the final tocol content in oil from market. This study could be beneficial for the oil industry and dietary nutrition.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Jiang
- Correspondence: (X.J.); (Z.W.); Tel.: +86-532-82032597 (Z.W.)
| | - Zihao Wei
- Correspondence: (X.J.); (Z.W.); Tel.: +86-532-82032597 (Z.W.)
| |
Collapse
|
14
|
Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil. Foods 2020; 9:foods9030292. [PMID: 32150867 PMCID: PMC7143469 DOI: 10.3390/foods9030292] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The impact of the olive oil refining process on major antioxidant compound levels was evaluated by means of UHPLC analysis of lampante olive oils collected at different stages of the refining procedure (degumming, chemical and physical flash neutralization, bleaching, and deodorization). For this purpose, the evolution of the tocopherol fraction was investigated by means of the UHPLC-FL method, while the influence of the refining process on the total hydrolyzed phenolic content was assessed by measuring hydroxytyrosol and tyrosol levels after acid hydrolysis of the phenolic extracts. Refining was found to have a marked effect on total hydroxytyrosol and tyrosol contents, as they are completely removed in the early steps of the refining procedure. In contrast, the variation trends of tocopherols are not always clear-cut, and significant decreases in content from 7% to 16% were only revealed during refining in four out of nine samples. In addition, five of the nine refined oils showed final tocopherol concentrations higher than 200 mg/kg, the limit imposed by international standards regarding the content of such compounds in commercial olive oils. This study supports the need for a revision of the International Olive Oil Council (IOC) standard relative to the limit established for tocopherol addition to refined oils to avoid possible legal and economic trade issues.
Collapse
|