1
|
Vlaming-van Eijk LE, Bulthuis MLC, van der Gun BTF, Wold KI, Veloo ACM, Vincenti González MF, de Borst MH, den Dunnen WFA, Hillebrands JL, van Goor H, Tami A, Bourgonje AR. Systemic oxidative stress associates with the development of post-COVID-19 syndrome in non-hospitalized individuals. Redox Biol 2024; 76:103310. [PMID: 39163767 PMCID: PMC11381883 DOI: 10.1016/j.redox.2024.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Post-COVID-19 syndrome (PCS) remains a major health issue worldwide, while its pathophysiology is still poorly understood. Systemic oxidative stress (OS) may be involved in PCS, which is reflected by lower circulating free thiols (R-SH, sulfhydryl groups), as they are receptive to rapid oxidation by reactive species. This study aimed to investigate the longitudinal dynamics of serum R-SH after SARS-CoV-2 infection and its association with the development of PCS in individuals with mild COVID-19. METHODS Baseline serum R-SH concentrations were measured and compared between 135 non-hospitalized COVID-19 subjects and 82 healthy controls (HC). In COVID-19 subjects, serum R-SH concentrations were longitudinally measured during the acute disease phase (up to 3 weeks) and at 3, 6, and 12 months of follow-up, and their associations with relevant clinical parameters were investigated, including the development of PCS. RESULTS Baseline albumin-adjusted serum R-SH were significantly reduced in non-hospitalized COVID-19 subjects as compared to HC (p = 0.041), reflecting systemic OS. In mild COVID-19 subjects, trajectories of albumin-adjusted serum R-SH levels over a course of 12 months were longitudinally associated with the future presence of PCS 18 months after initial infection (b = -9.48, p = 0.023). CONCLUSION Non-hospitalized individuals with COVID-19 show evidence of systemic oxidative stress, which is longitudinally associated with the development of PCS. Our results provide a rationale for future studies to further investigate the value of R-SH as a monitoring biomarker and a potential therapeutic target in the development of PCS.
Collapse
Affiliation(s)
- Larissa E Vlaming-van Eijk
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Marian L C Bulthuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Bernardina T F van der Gun
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Karin I Wold
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Alida C M Veloo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - María F Vincenti González
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Martin H de Borst
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Adriana Tami
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Arno R Bourgonje
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
van Eijk LE, Bourgonje AR, Messchendorp AL, Bulthuis MLC, Reinders-Luinge M, Doornbos-van der Meer B, Westra J, den Dunnen WFA, Hillebrands JL, Sanders JSF, van Goor H. Systemic oxidative stress may be associated with reduced IgG antibody titers against SARS-CoV-2 in vaccinated kidney transplant recipients: A post-hoc analysis of the RECOVAC-IR observational study. Free Radic Biol Med 2024; 215:14-24. [PMID: 38395091 DOI: 10.1016/j.freeradbiomed.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) poses an increased risk for severe illness and suboptimal vaccination responses in patients with kidney disease, in which oxidative stress may be involved. Oxidative stress can be reliably measured by determining circulating free thiols (R-SH, sulfhydryl groups), since R-SH are rapidly oxidized by reactive species. In this study, we aimed to examine the association between serum free thiols and the ability to mount a humoral immune response to SARS-CoV-2 vaccination in kidney patients. METHODS Serum free thiol concentrations were measured in patients with chronic kidney disease stages 4/5 (CKD G4/5) (n = 46), on dialysis (n = 43), kidney transplant recipients (KTR) (n = 73), and controls (n = 50). Baseline serum free thiol and interferon-γ-induced protein-10 (IP-10) - a biomarker of the interferon response - were analyzed for associations with seroconversion rates and SARS-CoV-2 spike (S1)-specific IgG concentrations after two doses of the mRNA-1273 vaccine. RESULTS Albumin-adjusted serum free thiol concentrations were significantly lower in patients with CKD G4/5 (P < 0.001), on dialysis (P < 0.001), and KTR (P < 0.001), as compared to controls. Seroconversion rates after full vaccination were markedly reduced in KTR (52.1%) and were significantly associated with albumin-adjusted free thiols (OR = 1.76, P = 0.033). After adjustment for MMF use, hemoglobin, and eGFR, this significance was not sustained (OR = 1.49, P = 0.241). CONCLUSIONS KTR show suboptimal serological responses to SARS-CoV-2 vaccination, which is inversely associated with serum R-SH, reflecting systemic oxidative stress. Albeit this association was not robust to relevant confounding factors, it may at least partially be involved in the inability of KTR to generate a positive serological response after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Larissa E van Eijk
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Arno R Bourgonje
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - A Lianne Messchendorp
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Marian L C Bulthuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Marjan Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Wilfred F A den Dunnen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Luuk Hillebrands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Stephan F Sanders
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
3
|
de Koning MSLY, Emmens JE, Romero-Hernández E, Bourgonje AR, Assa S, Figarska SM, Cleland JGF, Samani NJ, Ng LL, Lang CC, Metra M, Filippatos GS, van Veldhuisen DJ, Anker SD, Dickstein K, Voors AA, Lipsic E, van Goor H, van der Harst P. Systemic oxidative stress associates with disease severity and outcome in patients with new-onset or worsening heart failure. Clin Res Cardiol 2023; 112:1056-1066. [PMID: 36997667 PMCID: PMC10062262 DOI: 10.1007/s00392-023-02171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Oxidative stress may be a key pathophysiological mediator in the development and progression of heart failure (HF). The role of serum-free thiol concentrations, as a marker of systemic oxidative stress, in HF remains largely unknown. OBJECTIVE The purpose of this study was to investigate associations between serum-free thiol concentrations and disease severity and clinical outcome in patients with new-onset or worsening HF. METHODS Serum-free thiol concentrations were determined by colorimetric detection in 3802 patients from the BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF). Associations between free thiol concentrations and clinical characteristics and outcomes, including all-cause mortality, cardiovascular mortality, and a composite of HF hospitalization and all-cause mortality during a 2-years follow-up, were reported. RESULTS Lower serum-free thiol concentrations were associated with more advanced HF, as indicated by worse NYHA class, higher plasma NT-proBNP (P < 0.001 for both) and with higher rates of all-cause mortality (hazard ratio (HR) per standard deviation (SD) decrease in free thiols: 1.253, 95% confidence interval (CI): 1.171-1.341, P < 0.001), cardiovascular mortality (HR per SD: 1.182, 95% CI: 1.086-1.288, P < 0.001), and the composite outcome (HR per SD: 1.058, 95% CI: 1.001-1.118, P = 0.046). CONCLUSIONS In patients with new-onset or worsening HF, a lower serum-free thiol concentration, indicative of higher oxidative stress, is associated with increased HF severity and poorer prognosis. Our results do not prove causality, but our findings may be used as rationale for future (mechanistic) studies on serum-free thiol modulation in heart failure. Associations of serum-free thiol concentrations with heart failure severity and outcomes.
Collapse
Affiliation(s)
- Marie-Sophie L Y de Koning
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Johanna E Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Solmaz Assa
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Sylwia M Figarska
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - John G F Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Institute of Cardiology, University of Brescia, Brescia, Italy
| | | | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Stefan D Anker
- Department of Cardiology (CVK), Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Yu S, Dong X, Lai W, Lu H, Xie Y, Xu JY, Zeng Y, Han K, Liang J, Liu J, Liu Y, Chen J. Establishment and assessment of a preclinical model of acute kidney injury induced by contrast media combined acute myocardial ischemia reperfusion surgery. Exp Ther Med 2023; 26:321. [PMID: 37346411 PMCID: PMC10280325 DOI: 10.3892/etm.2023.12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/20/2023] [Indexed: 06/23/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication after acute myocardial infarction (AMI) in clinical practice, and the majority of previous preclinical models were induced by a single factor. The objective of the present study was to establish a stable preclinic model of AKI induced by contrast media (CM) with acute myocardial ischemia reperfusion surgery and to identify the effect of oxidative stress on kidney injury. Rats were treated individually or with CM or myocardial ischemia reperfusion surgery. Renal baseline and AKI parameters, the level of oxidative stress and histopathological images were examined along with AKI biomarkers. Results showed the incidence of AKI in the CM group and ischemia reperfusion injury (IRI) group was 40%, χ2 test (P<0.05 vs. CM-IRI) and 35%, χ2 test (P<0.05 vs. CM-IRI) and the combination group had the highest incidence rate 75%. IRI surgery combined with CM diminished kidney function and induced oxidative stress by increasing creatinine, blood urea nitrogen and reactive oxygen species levels. Western blotting showed that the early AKI biomarker of NGAL and KIM-1 increased and that the combination group had the highest value. Pathology damage exhibited severe kidney damage in the combination group compared with other control groups. The present research established a reliable preclinic model of post-AMI AKI with a stable and high postoperative AKI rate. Additionally, CM was demonstrated to exacerbate AKI caused by acute myocardial infarction through oxidative stress and, thus, oxidative stress may be a potential therapeutic target.
Collapse
Affiliation(s)
- Sijia Yu
- Department of Cardiology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoli Dong
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Wenguang Lai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Pharmacy, Guangdong Provincial People's Hospital, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 5130006, P.R. China
| | - Hongyu Lu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yun Xie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Pharmacy, Guangdong Provincial People's Hospital, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 5130006, P.R. China
| | - Jun-Yan Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Ministry of Education, Haikou, Hainan 571199, P.R. China
| | - Yewen Zeng
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou, Guangdong 523136, P.R. China
| | - Kedong Han
- Department of Cardiology, Maoming People's Hospital, Maoming, Guangdong 525000, P.R. China
| | - Jinqiang Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Jin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiyan Chen
- Department of Cardiology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
5
|
Sůva M, Kala P, Poloczek M, Kaňovský J, Štípal R, Radvan M, Hlasensky J, Hudec M, Brázdil V, Řehořová J. Contrast-induced acute kidney injury and its contemporary prevention. Front Cardiovasc Med 2022; 9:1073072. [PMID: 36561776 PMCID: PMC9763312 DOI: 10.3389/fcvm.2022.1073072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity and application range of interventional and diagnostic procedures using contrast media (CM) have recently increased. This allows more patients to undergo procedures that involve CM administration. However, the intrinsic CM toxicity leads to the risk of contrast-induced acute kidney injury (CI-AKI). At present, effective therapy of CI-AKI is rather limited. Effective prevention of CI-AKI therefore becomes crucially important. This review presents an in-depth discussion of CI-AKI incidence, pathogenesis, risk prediction, current preventive strategies, and novel treatment possibilities. The review also discusses the difference between CI-AKI incidence following intraarterial and intravenous CM administration. Factors contributing to the development of CI-AKI are considered in conjunction with the mechanism of acute kidney damage. The need for ultimate risk estimation and the prediction of CI-AKI is stressed. Possibilities of CI-AKI prevention is evaluated within the spectrum of existing preventive measures aimed at reducing kidney injury. In particular, the review discusses intravenous hydration regimes and pre-treatment with statins and N-acetylcysteine. The review further focuses on emerging alternative imaging technologies, alternative intravascular diagnostic and interventional procedures, and new methods for intravenous hydration guidance; it discusses the applicability of those techniques in complex procedures and their feasibility in current practise. We put emphasis on contemporary interventional cardiology imaging methods, with a brief discussion of CI-AKI in non-vascular and non-cardiologic imaging and interventional studies.
Collapse
Affiliation(s)
- Marek Sůva
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Kala
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia,*Correspondence: Petr Kala,
| | - Martin Poloczek
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Kaňovský
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Roman Štípal
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Radvan
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Hlasensky
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Hudec
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vojtěch Brázdil
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czechia,Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jitka Řehořová
- Department of Internal Medicine and Gastroenterology, University Hospital, Brno, Czechia
| |
Collapse
|
6
|
Bourgonje AR, Otten AT, Sadaghian Sadabad M, von Martels JZH, Bulthuis MLC, Faber KN, van Goor H, Dijkstra G, Harmsen HJM. The effect of riboflavin supplementation on the systemic redox status in healthy volunteers: A post-hoc analysis of the RIBOGUT trial. Free Radic Biol Med 2022; 190:169-178. [PMID: 35973668 DOI: 10.1016/j.freeradbiomed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Riboflavin is a redox-active vitamin that plays a pivotal role in human energy metabolism. Riboflavin may have beneficial health effects by increasing extracellular antioxidant capacity, thereby alleviating oxidative stress. Reduced levels of free thiols in blood reflect systemic oxidative stress, since they are readily oxidized by reactive species. In this study, we aimed to study the potential of riboflavin supplementation to improve the systemic redox status in healthy volunteers. METHODS This study was a post-hoc analysis of the RIBOGUT study, a randomized, double-blind, placebo-controlled human intervention trial that investigated the effect of riboflavin supplements on the gut microbiota composition of healthy individuals. Serum free thiols were quantified before and after intervention and adjusted to serum albumin levels. Changes in albumin-adjusted free thiols were analyzed, as well as potential associations with routine laboratory parameters and faecal bacterial quantification by fluorescence in-situ hybridization (FISH). RESULTS Participants were randomized to either placebo (n = 34), riboflavin 50 mg daily (n = 32), or riboflavin 100 mg daily (n = 33). At baseline, no significant differences in albumin-adjusted serum free thiols were observed. After intervention with either placebo or riboflavin, albumin-adjusted serum free thiols did not significantly change (P > 0.05), however, observed changes were inversely associated with changes in C-reactive protein (CRP) levels (r = -0.22, P < 0.05). At baseline, albumin-adjusted serum free thiols were positively associated with faecal relative abundances of Faecalibacterium prausnitzii (P < 0.01). CONCLUSION Riboflavin did not change the systemic redox status in healthy individuals as reflected by serum free thiols, but observed changes in albumin-adjusted free thiol levels were negatively associated with changes in CRP levels. Strikingly, albumin-adjusted free thiols were independently associated with relative abundances of faecal F. prausnitzii, which may suggest a potential host redox-microbiota interaction.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Antonius T Otten
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mehdi Sadaghian Sadabad
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Julius Z H von Martels
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense. Antioxidants (Basel) 2022; 11:antiox11061046. [PMID: 35739943 PMCID: PMC9219715 DOI: 10.3390/antiox11061046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is a major mediator of adverse outcomes in acute kidney injury (AKI). Deficiency of micronutrients, such as folate, is common in AKI. Our previous study reported that AKI impaired kidney reabsorption of folate and decreased plasma folate level in rats. The present study investigated the effect of 5-methyltetrahydrofolate (5-MTHF), a biologically active form of folate/folic acid, on AKI-impaired kidney function and oxidative stress. Sprague-Dawley rats developed AKI after kidney ischemia (45 min) and reperfusion (24 h). Injection of 5-MTHF (3 µg/kg body weight) improved kidney function and attenuated oxidative stress with a restoration of glutathione and a reduction of lipid peroxidation in the kidney. Injection of 5-MTHF activated transcription factor Nrf2 and increased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 and heme oxygenase-1 in the kidney. Simulated ischemia-reperfusion through hypoxia-reoxygenation increased oxidative stress in proximal tubular cells. Incubation of cells with 5-MTHF alleviated cell injury and increased antioxidant enzyme expression and intracellular glutathione levels. Inhibition of Nrf2 expression through siRNA transfection abolished the effect of 5-MTHF against oxidative stress. These results suggest that low-dose folic acid can improve kidney function through activation of Nrf2 and restoration of antioxidant defence. Micronutrient supplements may improve clinical outcomes in AKI.
Collapse
|
8
|
Plasma Free Thiol Levels during Early Sepsis Predict Future Renal Function Decline. Antioxidants (Basel) 2022; 11:antiox11050800. [PMID: 35624664 PMCID: PMC9137477 DOI: 10.3390/antiox11050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a life-threatening syndrome characterized by acute organ dysfunction due to infection. In particular, acute kidney injury (AKI) is common among patients with sepsis and is associated with increased mortality and morbidity. Oxidative stress is an important contributor to the pathogenesis of sepsis-related AKI. Plasma free thiols (R-SH) reflect systemic oxidative stress since they are readily oxidized by reactive species and thereby serve as antioxidants. Here, we aimed to assess the concentrations of serum free thiols in sepsis and associate these with major adverse kidney events (MAKE). Adult non-trauma patients who presented at the emergency department (ED) with a suspected infection were included. Free thiol levels and ischemia-modified albumin (IMA), a marker of oxidative stress, were measured in plasma at baseline, at the ward, and at three months, and one year after hospitalization. Plasma free thiol levels were lower at the ED visit and at the ward as compared to three months and one year after hospital admission (p < 0.01). On the contrary, plasma levels of IMA were higher at the ED and at the ward compared to three months and one year after hospital admission (p < 0.01). Furthermore, univariate logistic regression analyses showed that plasma free thiol levels at the ED were inversely associated with long-term renal function decline and survival at 90 days (MAKE90) and 365 days (MAKE365) (OR 0.43 per standard deviation [SD] [0.22−0.82, 95% CI], p = 0.011 and OR 0.58 per SD [0.34−0.96, 95% CI], p = 0.035, respectively). A multivariate regression analysis revealed an independent association of plasma free thiols at the ED (OR 0.52 per SD [0.29−0.93, 95% CI], p = 0.028) with MAKE365, even after adjustments for age, eGFR at the ED, SOFA score, and cardiovascular disease. These data indicate the clear role of oxidative stress in the pathogenesis of sepsis-AKI, as reflected in the lower plasma free thiol levels and increased levels of IMA.
Collapse
|
9
|
Bourgonje AR, Abdulle AE, Bourgonje MF, Binnenmars SH, Gordijn SJ, Bulthuis MLC, la Bastide-van Gemert S, Kieneker LM, Gansevoort RT, Bakker SJL, Mulder DJ, Pasch A, de Borst MH, van Goor H. Serum free sulfhydryl status associates with new-onset chronic kidney disease in the general population. Redox Biol 2021; 48:102211. [PMID: 34896941 PMCID: PMC8671125 DOI: 10.1016/j.redox.2021.102211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Serum sulfhydryl groups (R-SH, free thiols) reliably reflect the systemic redox status in health and disease. As oxidation of R-SH occurs rapidly by reactive oxygen species (ROS), oxidative stress is accompanied by reduced levels of free thiols. Oxidative stress has been implicated in the pathophysiology of chronic kidney disease (CKD), in which redox imbalance may precede the onset of CKD. Therefore, we aimed to investigate associations between serum free thiols and the risk of incident CKD as defined by renal function decline and albuminuria in a population-based cohort study. METHODS Subjects without CKD (n = 4,745) who participated in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study, a prospective, population-based cohort study in the Netherlands, were included. Baseline protein-adjusted serum free thiols were studied for their associations with the development of CKD, defined as a composite outcome of an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2, urinary 24-h albumin excretion (UAE) > 30 mg/24-h, or both. RESULTS Median level of protein-adjusted serum free thiols at baseline was 5.14 μmol/g of protein (interquartile range [IQR]: 4.50-5.75 μmol/g) and median eGFR was 96 mL/min/1.73 m2 [IQR: 85-106]. Protein-adjusted serum free thiols were significantly associated with incident CKD (hazard ratio [HR] per doubling 0.42 [95% confidence interval [CI]: 0.36-0.52, P < 0.001), even after adjustment for traditional risk factors (HR 0.67 [95% CI: 0.47-0.94], P=0.022). In secondary analyses, the highest tertile of protein-adjusted serum free thiols was inversely associated with incident UAE >30 mg/24-h after full adjustment for confounding factors (HR per doubling 0.70 [95% CI: 0.51-0.96], P=0.028). CONCLUSION Higher levels of serum R-SH, reflecting less oxidative stress, are associated with a decreased risk of developing CKD in subjects from the general population. This association is primarily driven by incident CKD as defined by UAE.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Amaal E Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin F Bourgonje
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Heleen Binnenmars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lyanne M Kieneker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Tomşa AM, Răchişan AL, Pandrea SL, Benea A, Uifălean A, Parvu AE, Junie LM. Accelerated lipid peroxidation in a rat model of gentamicin nephrotoxicity. Exp Ther Med 2021; 22:1218. [PMID: 34584563 DOI: 10.3892/etm.2021.10652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney disease represents a burden for the health care system worldwide. As the prevalence continues to rise, discovering new biomarkers of early kidney damage has become crucial. Oxidative stress (OS) represents one of the main factors involved in the early stages of many syndromes leading to kidney damage. Therefore, it must be studied in detail. To date, many studies have focused on OS in advanced stages of acute kidney injury (AKI), with great success. The aim of the present study was to ascertain whether even mild renal function impairment can be linked to specific systemic markers of OS and systemic antioxidants in order to pinpoint certain biomarkers for early kidney damage. We used male rats (Rattus norvegicus) in which we induced kidney damage by injecting gentamicin for 7 days. Blood was collected 24 h after the last dose of gentamicin. Urea, creatinine, 3-nitrotyrosine (3-NT), nitric oxide (NO), malondialdehyde (MDA), thiols (TS), total oxidative stress (TOS), and interferon-γ (IFN-γ) were determined. In addition, for the antioxidant status we measured total antioxidant capacity (TAC) and interleukin-10 (IL-10). Our results demonstrated that the rats had mild renal impairment consistent with a pre-AKI stage due to the nephrotoxic effect of gentamicin. However, TOS, MDA and NO were significantly higher in the gentamicin group compared to the control group. In addition, TAC was higher in the control group. Hence, OS markers reach higher levels and may potentially be used as markers of kidney damage even in cases of mild renal function impairment.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomşa
- Department 9-Mother and Child, Second Clinic of Pediatrics, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania.,Department of Microbiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Liana Răchişan
- Department 9-Mother and Child, Second Clinic of Pediatrics, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
| | - Stanca Lucia Pandrea
- Department of Microbiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Laboratory Department, 'Prof. Dr. Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Andreea Benea
- Laboratory Department, 'Prof. Dr. Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Pathophysiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Elena Parvu
- Department of Pathophysiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lia Monica Junie
- Department of Microbiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|