1
|
Gomes SM, Rodrigues IC, Silva FA, Santos L. Evaluation of the potential of achachairu peel (Garcinia humilis) for the fortification of cereal-based foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:201-208. [PMID: 39126140 DOI: 10.1002/jsfa.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Achachairu is an exotic fruit that is being studied for its bioactive compound composition. However, there is scarce information on the properties of its by-products and their incorporation into food. In this study, achachairu peels were used to obtain phenolic-rich and sustainable ingredients. Furthermore, their potential for use in the fortification of food, particularly cereal-based products, was evaluated. Different ratios of ethanol:water were used to extract the phenolic compounds from achachairu (100:0, 90:10 and 70:30). The optimal extract was characterised regarding its total phenolic content (TPC) and antioxidant, antimicrobial and anti-enzymatic properties. Finally, achachairu peel powder and extract were incorporated into bread and their influence on the texture, antioxidant properties and shelf life of the product was evaluated. RESULTS High-performance liquid chromatographic analysis showed that the 90:10 extract contained a higher phenolic composition than the other samples. The achachairu extract presented a TPC of 88.7 mgGAE g-1, good antioxidant capacity towards DPPH and ABTS radicals and the capacity to inhibit the activity of α-amylase by almost 80%. The addition of achachairu peel powder and extract to bread increased its hardness, chewiness and gumminess, not affecting the remaining texture parameters. An increase in the TPC, antioxidant properties and shelf life of the product was also observed. CONCLUSION This study proves the potential for achachairu by-products incorporated into cereal-based products to improve their biological properties while extending the food shelf life. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sandra M Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ilana C Rodrigues
- Laboratório de Engenharia de Alimentos, Setor de Engenharia de Alimentos, Universidade Federal de Goiás, Goiânia, Brazil
| | - Flávio A Silva
- Laboratório de Engenharia de Alimentos, Setor de Engenharia de Alimentos, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Ranasinghe M, Alghaithi M, Mugdil P, Sundarakani B, Stathopoulos C, Maqsood S. Fiber and polyphenol enriched biscuits using date palm byproduct: Physiochemical characteristics, sensory properties, in vitro digestion, and storage stability. J Food Sci 2025; 90:e17667. [PMID: 39828419 DOI: 10.1111/1750-3841.17667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Functional biscuit was formulated by fortifying them with polyphenolic extract and fiber-rich residue of defatted date seed powder (DDSP) obtained through microwave-assisted extraction. Effect of particle size (small, medium, and large) and substitution level (2.5%, 5%, and 7.5%) of fiber-rich residue, along with the phenolic extract, on bioactive, physical, textural, and gastrointestinal digestion of fortified biscuits was studied followed by sensory and shelf-life studies. The total phenolic content (TPC) and antioxidant properties of biscuits increased with increasing substitution levels and particle size. DDSP residue fortification increased the fiber content in biscuits. Large particles of the residue-fortified biscuits showed significantly higher (p < 0.05) hardness compared to the control biscuits. Diameter of the biscuits decreased with increasing substitution level and particle size of fiber-rich residue with the lowest value of 50.66 mm in 7.5% substitution of large particles. The 7.5% substitution level of small particles resulted in the lowest spread ratio of 8.97 and the highest thickness of 5.79 mm. Consumer perceptions were at an acceptable level after the fortification, with an average sensory score of 6.02 out of 9 for overall acceptability. After 24 weeks storage, TPC decreased in biscuits, but TPC retention increased with increasing substitution level and particle size of residue. Thiobarbituric acid reactive substances (TBARS) value of biscuits increased with storage. The highest phenolic recovery was observed in the intestinal phase of the gastrointestinal digestion with the highest recovery of 102.33 at 2.5% level of large particles. Thus, phenolic extract and fiber-rich residue incorporation was effective to enhance the nutritional and functional properties of biscuits. PRACTICAL APPLICATION: Date seeds are rich in bioactive components and fiber. This study demonstrated the feasibility of utilizing date seeds to improve nutritional and functional properties of bakery products. The incorporation of the microwave-assisted polyphenolic extract and the fiber-rich residue of defatted date seed powder into biscuit enhanced the bioactive, nutritional, and functional characteristics while maintaining the consumer acceptance. This research contributes to the valorization of byproducts in the agriculture and food industries, promoting sustainability and a bio-circular economy.
Collapse
Affiliation(s)
- Meththa Ranasinghe
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mariam Alghaithi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mugdil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Balan Sundarakani
- Faculty of Business, University of Wollongong in Dubai, Dubai, United Arab Emirates
| | - Constantinos Stathopoulos
- Food Futures Institute, Murdoch University, Murdoch, Australia
- Faculty of Health, University of Canberra, Bruce, Australia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
Ranasinghe M, Alghaithi M, Stathopoulos C, Sundarakani B, Maqsood S. Valorizing date seeds through ultrasonication to enhance quality attributes of dough and biscuit: Part 2 - Study on bioactive properties, sensory acceptance, in vitro gastrointestinal digestion and shelf life of biscuits. ULTRASONICS SONOCHEMISTRY 2025; 112:107160. [PMID: 39612753 PMCID: PMC11647796 DOI: 10.1016/j.ultsonch.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Aligning with sustainable food system development, in this study, date seeds derived compounds were utilized as functional ingredient to formulate value-added biscuits. Ultrasound-assisted extraction (UAE) was employed as a non-thermal method to extract polyphenolic compounds from small, medium and large particles of defatted date seed powder (DDSP). The remaining fiber-rich fraction (residue) was further utilized. Water content in biscuit formulation was replaced by the extract, and the fiber-rich fraction was substituted at three substitution levels; 2.5 %, 5 % and 7.5 %. Effects of baking on bioactive properties of dough, nutrient composition, sensory analysis, bioaccessibility of polyphenols, and shelf-life of biscuits were analyzed. Total phenolic content (TPC) increased in dough and biscuit with incorporated fiber-rich fraction. TPC of dough decreased with increasing particle size of fiber-rich fraction while biscuits exhibited an opposite trend. Similar tendency was observed with antioxidant activity of dough and biscuit. TPC was higher in biscuits than dough, with the highest values of 0.46 mg gallic acid equivalents (GAE)/g and 2.26 mg GAE/g in dough and biscuit, respectively. Fiber and moisture contents in biscuits increased while protein content decreased with fortification. Consumers showed moderate acceptance of fortified biscuits with overall acceptability comparable with the control biscuits. Bioaccessibility index of polyphenols upon gastrointestinal digestion was high in biscuits with 5 % and 7.5 % substitution of small and medium sized particles of fiber-rich fraction. Phenolic retention increased with fiber fortification and at the end of 6 months the lowest thiobarbituric acid reactive substances (TBARS) value of 18.23 nmol malondialdehyde (MDA)/g sample, was observed in 7.5 % large particle substituted biscuit. Thus, utilizing date seeds in the form of green extracted polyphenols and fiber-rich fraction, as functional and bioactive ingredients highlight sustainable processing and utilization of date-fruit processing by-products which is in line with the circular economy approach.
Collapse
Affiliation(s)
- Meththa Ranasinghe
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Mariam Alghaithi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Constantinos Stathopoulos
- Food Futures Institute, Murdoch University, Australia; Faculty of Health, University of Canberra, Australia
| | - Balan Sundarakani
- Faculty of Business, University of Wollongong in Dubai, 20183, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
4
|
Ahanchi M, Sugianto EC, Chau A, Khoddami A. Quality Properties of Bakery Products and Pasta Containing Spent Coffee Grounds (SCGs): A Review. Foods 2024; 13:3576. [PMID: 39593992 PMCID: PMC11593810 DOI: 10.3390/foods13223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Coffee is one of the most consumed and popular beverages worldwide, and it produces a significant quantity of waste. Spent coffee grounds (SCGs) are one of the major waste products that can be used as an ingredient for creating novel foods. Therefore, the effect of incorporating varying percentages of spent coffee grounds (SCGs) on the quality properties of bakery products and pasta is reviewed. Chemically, SCGs alter protein, fat, fiber, ash, and bioactive compound levels in bakery and pasta products, improving nutritional value and promoting health benefits. The impact of SCGs on the physical characteristics of baked goods depends on factors like SCG concentration and processing methods, which influence product texture and structure. Sensory properties are vital for consumer acceptance. SCGs can add unique flavors and colors to baked goods, but more attention is needed to optimize the SCGs' incorporation concentration for a better consumer appeal. In conclusion, integrating SCGs into bakery products and pasta offers nutritional enhancement, sustainability, and sensory improvement opportunities. Optimizing product quality allows manufacturers to leverage SCGs' potential in the food industry.
Collapse
Affiliation(s)
- Mitra Ahanchi
- Faculty of Management, University of Warsaw, ul. Szturmowa 1/3, 02-678 Warszawa, Poland
| | - Elizabeth Christie Sugianto
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amy Chau
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ali Khoddami
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Farhan M, Faisal M. The Potential Role of Polyphenol Supplementation in Preventing and Managing Depression: A Review of Current Research. Life (Basel) 2024; 14:1342. [PMID: 39459643 PMCID: PMC11509552 DOI: 10.3390/life14101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Depression is a common mental illness that affects 5% of the adult population globally. The most common symptoms of depression are low mood, lack of pleasure from different activities, poor concentration, and reduced energy levels for an extended period, and it affects the emotions, behaviors, and overall well-being of an individual. The complex pathophysiology of depression presents challenges for current therapeutic options involving a biopsychosocial treatment plan. These treatments may have a delayed onset, low remission and response rates, and undesirable side effects. Researchers in nutrition and food science are increasingly addressing depression, which is a significant public health concern due to the association of depression with the increased incidence of cardiovascular diseases and premature mortality. Polyphenols present in our diet may significantly impact the prevention and treatment of depression. The primary mechanisms include reducing inflammation and oxidative stress, regulating monoamine neurotransmitter levels, and modulating the microbiota-gut-brain axis and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This review summarizes recent advances in understanding the effects of dietary polyphenols on depression and explores the underlying mechanisms of these effects for the benefit of human health. It also highlights studies that are looking at clinical trials to help future researchers incorporate these substances into functional diets, nutritional supplements, or adjunctive therapy to prevent and treat depression.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mohd Faisal
- St. Michael’s Unit, Department of Psychiatry, Mercy University Hospital, Grenville Place, T12WE28 Cork, Ireland
- Tosnú Mental Health Centre, West Village, Ballincollig, P31N400 Cork, Ireland
| |
Collapse
|
6
|
Karvela ED, Nikolaou EN, Tagkouli D, Chiou A, Karathanos VT. Assessing Different Fruit Formulations for the Supplementation of Bakery Products with Bioactive Micro-Constituents from Sweet Cherry ( Prunus avium L.) and Sour Cherry ( Prunus cerasus L.): A Physicochemical and Rheological Approach. Foods 2024; 13:2794. [PMID: 39272558 PMCID: PMC11394745 DOI: 10.3390/foods13172794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Sour and sweet cherries were evaluated as functional components in bread-making because of their bioactive microconstituent content. Five forms of enrichment for each fruit, including the hydroalcoholic extract, lyophilized pulverized fruit, lyophilized extract, and their combinations, were used for supplementation. The physicochemical (pH, color, moisture, rheology, and texture) and sensory properties of dough and bread were assessed in different environments (biological and chemical leavening). Sour cherry in pulverized and extract forms showed higher phenolic content than sweet cherry, especially in the pulverized form. The viscoelasticity of the doughs varied based on the proofing environment and the fortification form. Chemically leavened doughs exhibited higher moduli (G', G″), complex viscosity (η*), and hardness. Biologically leavened doughs had a lower pH, influencing color, and swelling percentage, which is linked to the enrichment form and phenolic content. Extract-fortified doughs displayed increased G', η*, and hardness compared to the control, whereas yeast-leavened doughs showed reduced swelling ability. Physicochemical changes were more significant in the yeast-leavened systems, which also scored higher on the sensory evaluations. Supplementing bakery products with bioactive fruit components enhances antioxidant status, but the enrichment form and proofing conditions significantly affect the physicochemical and sensory properties of the product.
Collapse
Affiliation(s)
- Evangelia D Karvela
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece
| | - Evgenia N Nikolaou
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece
| | - Dimitra Tagkouli
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece
| | - Antonia Chiou
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece
| | - Vaios T Karathanos
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece
| |
Collapse
|
7
|
Urugo MM, Teka TA, Gemede HF, Mersha S, Tessema A, Woldemariam HW, Admassu H. A comprehensive review of current approaches on food waste reduction strategies. Compr Rev Food Sci Food Saf 2024; 23:e70011. [PMID: 39223762 DOI: 10.1111/1541-4337.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Food waste is a serious worldwide issue that has an impact on the environment, society, and economy. This comprehensive review provides a detailed description of methods and approaches for reducing food waste, emphasizing the necessity of comprehensive strategies to tackle its intricate relationship with environmental sustainability, social equity, and economic prosperity. By scrutinizing the extent and impact of food waste, from initial production stages to final disposal, this comprehensive review underlines the urgent need for integrated solutions that include technological advancements, behavioral interventions, regulatory frameworks, and collaborative endeavors. Environmental assessments highlight the significant contribution of food waste to greenhouse gas emissions, land degradation, water scarcity, and energy inefficiency, thereby emphasizing the importance of curtailing its environmental impact. Concurrently, the social and economic consequences of food waste, such as food insecurity, economic losses, and disparities in food access, underscore the imperative for coordinated action across multiple sectors. Food waste can also be effectively reduced by various innovative approaches, such as technological waste reduction solutions, supply chain optimization strategies, consumer behavior-focused initiatives, and waste recovery and recycling techniques. Furthermore, in order to foster an environment that encourages the reduction of food waste and facilitates the transition to a circular economy, legislative changes and regulatory actions are essential. By embracing these multifaceted strategies and approaches, stakeholders can unite to confront the global food waste crisis, thereby fostering resilience, sustainability, and social equity within our food systems.
Collapse
Affiliation(s)
- Markos Makiso Urugo
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Department of Food Science and Postharvest Technology, Wachemo University, Hosaina, Ethiopia
| | - Tilahun A Teka
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Habtamu Fikadu Gemede
- Food Technology and Process Engineering Department, Wollega University, Nekemte, Ethiopia
| | - Siwan Mersha
- Department of Food Science and Postharvest Technology, Wachemo University, Hosaina, Ethiopia
| | - Ararsa Tessema
- Department of Food Engineering, Arba Minch University, Arba Minch, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Habtamu Admassu
- Department of Food Process Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocessing Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Cannas M, Conte P, Piga A, Del Caro A. Artichoke By-Product Extracts as a Viable Alternative for Shelf-Life Extension of Breadsticks. Foods 2024; 13:2639. [PMID: 39200566 PMCID: PMC11353531 DOI: 10.3390/foods13162639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/02/2024] Open
Abstract
The upcycling of agricultural by-products and the extension of the shelf-life of staple foods represent crucial strategies for mitigating the consequences of food losses and enhancing the competitiveness of the agri-food industry, thus facilitating the attainment of higher financial revenues. This is particularly relevant for global artichoke cultivation, where 60-80% of its biomass is discarded annually. The present study investigated the potential of using non-stabilized polyphenol-rich extracts from the main artichoke by-products (bracts, leaves, and stems) to fortify and extend the shelf-life of breadsticks. The incorporation of hydroalcoholic extracts at two addition levels (1000-2000 ppm) resulted in an increased antioxidant capacity and oxidative stability of fortified breadsticks. Rheological tests revealed that the fortification did not affect the dough's workability, with the exception of the leaf extract. While a slight deterioration in texture was observed, the shelf-life of breadsticks was significantly extended, particularly at the highest levels of addition, without any visible alteration in their appearance. The stem extract demonstrated the most promising outcomes, exhibiting a maximum increase of 69% in antioxidant capacity (DPPH) and an extension of the estimated shelf-life by 62% in the resulting breadsticks, prompting the potential for utilizing them to develop nutritious and healthy snacks with extended shelf-life.
Collapse
Affiliation(s)
| | - Paola Conte
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39/A, 07100 Sassari, Italy; (M.C.); (A.P.); (A.D.C.)
| | | | | |
Collapse
|
9
|
García-Milla P, Peñalver R, Nieto G. Formulation and Physical-Chemical Analysis of Functional Muffin Made with Inulin, Moringa, and Cacao Adapted for Elderly People with Parkinson's Disease. Antioxidants (Basel) 2024; 13:683. [PMID: 38929120 PMCID: PMC11200759 DOI: 10.3390/antiox13060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects people's health. Constipation is probably one of the most prominent gastrointestinal symptoms (non-motor symptoms) of PD with devastating consequences. The aim of this research work is to formulate a functional food product, supplemented with inulin, cocoa, and Moringa, which can be an adjuvant in the treatment of constipation. The product was prepared according to a muffin or "Chilean cake" recipe; this basic muffin was prepared with additions of inulin (MI), inulin + cacao (MIC), and inulin + Moringa (MIM). A physical-chemical analysis of the macronutrients and an antioxidant capacity assessment of the samples were conducted, as well as a sensory evaluation performed by a group of people suffering from Parkinson's disease. A statistically significant difference was observed in the soluble (p = 0.0023) and insoluble (p = 0.0015) fiber values between the control samples and all samples. Furthermore, inulin + cacao improved the antioxidant capacity and folate intake compared to the control. Inulin alone has been shown to have antioxidant capacity according to ABTS (262.5728 ± 34.74 μmol TE/g) and DPPH (9.092518 ± 10.43 μmol TE/g) assays. A sensory evaluation showed a preference for the product with inulin and for the product with inulin + cacao, with a 78% purchase intention being reported by the subjects who evaluated the products. The incorporation of inulin and cacao improved the nutritional value of the muffins; the dietary fiber, antioxidant capacity and folate content are some of the features that stood out. A bakery product enriched with inulin, cocoa and Moringa could serve as a nutritional strategy to enhance nutritional value, thus helping in the treatment of constipation.
Collapse
Affiliation(s)
- Paula García-Milla
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
- Nutrition and Dietetics Program, Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia 7500975, Chile
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
| |
Collapse
|
10
|
Brennan CS. Regenerative Food Innovation: The Role of Agro-Food Chain By-Products and Plant Origin Food to Obtain High-Value-Added Foods. Foods 2024; 13:427. [PMID: 38338562 PMCID: PMC10855700 DOI: 10.3390/foods13030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Food losses in the agri-food sector have been estimated as representing between 30 and 80% of overall yield. The agro-food sector has a responsibility to work towards achieving FAO sustainable goals and global initiatives on responding to many issues, including climate pressures from changes we are experiencing globally. Regenerative agriculture has been discussed for many years in terms of improving our land and water. What we now need is a focus on the ability to transform innovation within the food production and process systems to address the needs of society in the fundamental arenas of food, health and wellbeing in a sustainable world. Thus, regenerative food innovation presents an opportunity to evaluate by-products from the agriculture and food industries to utilise these waste streams to minimise the global effects of food waste. The mini-review article aims to illustrate advancements in the valorisation of foods from some of the most recent publications published by peer-reviewed journals during the last 4-5 years. The focus will be applied to plant-based valorised food products and how these can be utilised to improve food nutritional components, texture, sensory and consumer perception to develop the foods for the future.
Collapse
|
11
|
Pronina Y, Belozertseva O, Nabiyeva Z, Pirozzi A, Carpentieri S, Ferrari G, Bazylkhanova E, Burlyayeva A. Enhancing nutritional value and health benefits of gluten-free confectionery products: innovative pastilles and marshmallows. Front Nutr 2024; 10:1321004. [PMID: 38283910 PMCID: PMC10811032 DOI: 10.3389/fnut.2023.1321004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The research focuses on enhancing the nutritional value and potential health benefits of gluten-free confectionery products, developing innovative pastilles and marshmallows enriched with medicinal herb extracts, probiotics, and bioactive compounds from natural sources. Methods Physicochemical properties, including water activity, texture, and color, are assessed to evaluate the quality of the final products. Moreover, in vitro digestibility of the confectionery products is also investigated, with a focus on the release of bioactive compounds such as total phenolic compounds (TPC) and total anthocyanin (TAC) during simulated gastrointestinal digestion. Results and discussion Results indicate that the addition of specific ingredients to pastille samples does not lead to variations in water activity (~0.44), preserving the original properties, quality, and stability of the food. In contrast, the incorporation of additives in marshmallow products significantly increases water activity (p ≤ 0.05), attributed to their moisture-retaining effect. In general, our findings reveal that texture properties and color parameters are significantly affected by different formulations (p ≤ 0.05) for both confectionery products. Notably, the use of fruit and berries puree, along with the incorporation of additives, improves the functionality of confectionary products in terms of consumer acceptance (harder pastilles and softer marshmallow) and product quality. Furthermore, the study reveals that bioactive compounds are released and become more bioaccessible during digestion, particularly in the intestinal phase, with a maximum release exceeding 97% of TPC and TAC for both pastille and marshmallow samples. These findings pave the way for the development of a new category of gluten-free confectionery products, enriched with functional ingredients that offer potential health benefits, aligning with consumer preferences for natural, functional, and health-conscious treats. This research contributes to the evolving the landscape of functional confectionery products and underscores their potential as immune-boosting and naturally based food options.
Collapse
Affiliation(s)
- Yuliya Pronina
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | - Olga Belozertseva
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | - Zhanar Nabiyeva
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | - Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Elmira Bazylkhanova
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | | |
Collapse
|
12
|
Nabi BG, Mukhtar K, Ansar S, Hassan SA, Hafeez MA, Bhat ZF, Mousavi Khaneghah A, Haq AU, Aadil RM. Application of ultrasound technology for the effective management of waste from fruit and vegetable. ULTRASONICS SONOCHEMISTRY 2024; 102:106744. [PMID: 38219546 PMCID: PMC10825644 DOI: 10.1016/j.ultsonch.2023.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Food waste presents a continuous challenge for the food industry, leading to environmental pollution and economic issues. A substantial amount of waste, including by-products from fruits and vegetables, non-edible food items, and other waste materials, is produced throughout the food supply chain, from production to consumption. Recycling and valorizing waste from perishable goods is emerging as a key multidisciplinary approach within the circular bio-economy framework. This waste, rich in raw by-products, can be repurposed as a natural source of ingredients. Researchers increasingly focus on biomass valorization to extract and use components that add significant value. Traditional methods for extracting these bio-compounds typically require the use of solvents and are time-consuming, underscoring the need for innovative techniques like ultrasound (US) extraction. Wastes from the processing of fruits and vegetables in the food industry can be used to develop functional foods and edible coatings, offering protection against various environmental factors. This comprehensive review paper discusses the valorization of waste from perishable items like fruits and vegetables using US technology, not only to extract valuable components from waste but also to treat wastewater in the beverage industry. It also covers the application of biomolecules recovered from this process in the development of functional foods and packaging.
Collapse
Affiliation(s)
- Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Adnan Hafeez
- Department of Human Nutrition and Food Technology, Faculty of Allied Health Sciences, Superior University Lahore, Pakistan
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, Skuast-J, Jammu, India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ahsan Ul Haq
- Department of Forestry & Range Management, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
13
|
Ahmadzadeh S, Clary T, Rosales A, Ubeyitogullari A. Upcycling imperfect broccoli and carrots into healthy snacks using an innovative 3D food printing approach. Food Sci Nutr 2024; 12:84-93. [PMID: 38268873 PMCID: PMC10804080 DOI: 10.1002/fsn3.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 01/26/2024] Open
Abstract
Vegetables are healthy foods with nutritional benefits; however, nearly one-third of the world's vegetables are lost each year, and some of the losses happen due to the imperfect shape of the vegetables. In this study, imperfect vegetables (i.e., broccoli and carrots) were upcycled into freeze-dried powders to improve their shelf-life before they were formed into food inks for 3D printing. The rheology of the food inks, color analysis of the uncooked and cooked designs, and texture analysis of the cooked designs were determined. The inks with 50% and 75% vegetables provided the best printability and shape fidelity. 3D printing at these conditions retained a volume comparable to the digital file (14.4 and 14.3 cm3 vs. 14.6 cm3, respectively). The control, a wheat flour-based formulation, showed the lowest level of stability after 3D printing. The viscosity results showed that all the food inks displayed shear-thinning behavior, with broccoli having the greatest effect on viscosity. There was a significant color difference between uncooked and cooked samples, as well as between different formulations. The hardness of the baked 3D-printed samples was affected by the type and content of vegetable powders, where carrot-based snacks were notably harder than snacks containing broccoli. Overall, the results show that 3D food printing can be potentially used to reduce the loss and waste of imperfect vegetables.
Collapse
Affiliation(s)
| | - Taylor Clary
- Department of Food ScienceUniversity of ArkansasFayettevilleArkansasUSA
| | - Alex Rosales
- Department of Food ScienceUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemical EngineeringUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Ali Ubeyitogullari
- Department of Food ScienceUniversity of ArkansasFayettevilleArkansasUSA
- Department of Biological and Agricultural EngineeringUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
14
|
Danciu CA, Tulbure A, Stanciu MA, Antonie I, Capatana C, Zerbeș MV, Giurea R, Rada EC. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods 2023; 12:3770. [PMID: 37893664 PMCID: PMC10606821 DOI: 10.3390/foods12203770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In an increasingly resource-constrained era, using waste and by-products from grain processing has a wide appeal. This is due to the nutritive value and economic aspects of this process and due to its compatibility with the trend towards more sustainable food systems. Following the fundamentals of circular economy, a current need is the effective utilization of grain waste and by-products for conversion into value-added products in the food industry. The aim of this study is twofold: (1) using bibliometrics and the literature found in various databases, we aim to understand the progress of valorizing grain waste and by-products in human nutrition. The literature within various databases, namely, Google Scholar, Web of Science, and Elsevier Scopus, has been evaluated for its merits and values. (2) We aim to explore knowledge-based strategies by reviewing the literature concerning the possible use of grain waste and by-products for the food processing industry, reducing the burden on virgin raw materials. The review allowed us to unlock the latest advances in upcycling side streams and waste from the grain processing industry.
Collapse
Affiliation(s)
- Cristina-Anca Danciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Anca Tulbure
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mirela-Aurora Stanciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Iuliana Antonie
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Ciprian Capatana
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mihai Victor Zerbeș
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Ramona Giurea
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, 46 Via G.B. Vico, 21100 Varese, Italy;
| |
Collapse
|
15
|
Elkatry HO, El-Beltagi HS, Ahmed AR, Mohamed HI, Al-Otaibi HH, Ramadan KMA, Mahmoud MAA. The potential use of Indian rice flour or husk in fortification of pan bread: assessing bread's quality using sensory, physicochemical, and chemometric methods. Front Nutr 2023; 10:1240527. [PMID: 37781123 PMCID: PMC10540694 DOI: 10.3389/fnut.2023.1240527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Hassawi rice is an Indica variety cultivated in Saudi Arabia with a higher nutritional value than the commercial Basmati rice varieties. The present study has investigated the feasibility of combining Hassawi rice flour (HRF) or husk (HRHF), an abundant byproduct, with wheat flour to produce nutritious economical pan bread. To achieve this aim, the physicochemical properties of HRF and HRHF were assessed using techniques such as UPLC-tandem MS, ICP-OES, and colorimeter. The proximate composition (moisture, crude fiber, and ash) and mineral contents of HRHF are significantly (p < 0.05) higher than HRF. On the other hand, the compounds p-coumaric acid, vanillic acid, γ- and δ-tocotrienols, and γ-oryzanol were unique to HRF. We further determined the changes in sensory, technological, and physicochemical properties of wheat flour bread substituted with 5%, 10%, and 15% of HRF or HRHF. The rheological tests showed that the addition of HRF and HRHF increased dough development and stability time. Further, substituting wheat flour for HRF and HRHF at levels higher than 10% affected sensory attributes, such as color, taste, odor, flavor, and appearance. These changes, however, were not always at a significant level. The causes of the differences in properties between control and fortified bread samples were investigated by chemometric methods. Samples of bread + HRF at 5 and 10% had comparable overall profiles to the control. On the other hand, bread + HRHF samples proved to retain higher concentrations of bioactive molecules compared to the control bread. Our findings shed light on the possible use of rice husk fibers in baking goods, notably pan bread. Furthermore, by integrating rice husk fibers into baked goods, we may boost their health benefits while also contributing to the long-term use of agricultural waste.
Collapse
Affiliation(s)
- Haiam O. Elkatry
- Department of Food and Nutrition Science, College of Agricultural Science and Food, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Home Economics, Faculty of Specific Education, Ain Shams University, Cairo, Egypt
| | - Hossam S. El-Beltagi
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelrahman R. Ahmed
- Department of Food and Nutrition Science, College of Agricultural Science and Food, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Home Economics, Faculty of Specific Education, Ain Shams University, Cairo, Egypt
| | - Heba I. Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Hala Hazam Al-Otaibi
- Department of Food and Nutrition Science, College of Agricultural Science and Food, King Faisal University, Al Hofuf, Saudi Arabia
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed A. A. Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Floridia V, Giuffrè L, Giosa D, Arfuso F, Aragona F, Fazio F, Chen C, Song C, Romeo O, D'Alessandro E. Comparison of the Faecal Microbiota Composition Following a Dairy By-Product Supplemented Diet in Nero Siciliano and Large White × Landrace Pig Breeds. Animals (Basel) 2023; 13:2323. [PMID: 37508100 PMCID: PMC10376647 DOI: 10.3390/ani13142323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The current study compared the faecal microbiota composition of two pig breeds (autochthonous vs. commercial) to understand what happens after the integration of liquid whey in the diet and what the role of the host genetic is. The trial was conducted for 60 days, and the faecal microbiota composition was investigated at three time points, T0, T1 (after 30 days) and T2 (after 60 days) in 30 female pigs (20 commercial crossbred and 10 Nero Siciliano pigs). The animals were divided into four groups (two control and two treatment groups). Generally, in both breeds, Firmicutes (51%) and Bacteroidota (36%) were the most abundant phylum whereas Prevotella, Treponema and Lactobacillus were the most abundant genera. The two breeds have a different reaction to a liquid whey diet. In fact, as shown by PERMANOVA analysis, the liquid whey significantly (p < 0.001) affects the microbiota composition of crossbreeds while not having an effect on the microbiota of the Nero Siciliano. Despite this, in both breeds Bifidobacterium and Ruminococcus have been positively influenced by liquid whey and they promote intestinal health, improve immunity, increase performance, and feed efficiency. In conclusion, the integration of liquid whey had a different effect on the Nero Siciliano and crossbred pig breeds, emphasizing the importance of the host genetic profile in determining the faecal bacterial composition.
Collapse
Affiliation(s)
- Viviana Floridia
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Francesca Arfuso
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Francesca Aragona
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Francesco Fazio
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengy Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Enrico D'Alessandro
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
17
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
18
|
de Carvalho NM, Oliveira DL, Costa CM, Pintado ME, Madureira AR. Strategies to Assess the Impact of Sustainable Functional Food Ingredients on Gut Microbiota. Foods 2023; 12:2209. [PMID: 37297454 PMCID: PMC10253045 DOI: 10.3390/foods12112209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, it is evident that food ingredients have different roles and distinct health benefits to the consumer. Over the past years, the interest in functional foods, especially those targeting gut health, has grown significantly. The use of industrial byproducts as a source of new functional and sustainable ingredients as a response to such demands has raised interest. However, the properties of these ingredients can be affected once incorporated into different food matrices. Therefore, when searching for the least costly and most suitable, beneficial, and sustainable formulations, it is necessary to understand how such ingredients perform when supplemented in different food matrices and how they impact the host's health. As proposed in this manuscript, the ingredients' properties can be first evaluated using in vitro gastrointestinal tract (GIT) simulation models prior to validation through human clinical trials. In vitro models are powerful tools that mimic the physicochemical and physiological conditions of the GIT, enabling prediction of the potentials of functional ingredients per se and when incorporated into a food matrix. Understanding how newly developed ingredients from undervalued agro-industrial sources behave as supplements supports the development of new and more sustainable functional foods while scientifically backing up health-benefits claims.
Collapse
Affiliation(s)
- Nelson Mota de Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Diana Luazi Oliveira
- Research and Innovation Unit—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal;
| | - Célia Maria Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Manuela Estevez Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| |
Collapse
|
19
|
Plessas S, Mantzourani I, Alexopoulos A, Alexandri M, Kopsahelis N, Adamopoulou V, Bekatorou A. Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice. Antioxidants (Basel) 2023; 12:1113. [PMID: 37237979 PMCID: PMC10215117 DOI: 10.3390/antiox12051113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
New types of sourdough breads are proposed, made with freeze-dried sourdough adjuncts based on: (i) Lactiplantibacillus plantarum subsp. plantarum ATCC 14917, a potential probiotic (LP) alone or (ii) with the addition of unfermented pomegranate juice (LPPO) and (iii) pomegranate juice fermented by the same strain (POLP). Physicochemical, microbiological, and nutritional characteristics (in vitro antioxidant capacity, AC, total phenolics, TPC, and phytate content) of the breads were evaluated and compared with commercial sourdough bread. All adjuncts performed well; the best results being those obtained by POLP. Specifically, the highest acidity (9.95 mL of 0.1 M NaOH) and organic acid content (3.02 and 0.95 g/kg, lactic and acetic acid, respectively) as well as better resistance to mold and rope spoilage (12 and 13 days, respectively) were observed for POLP3 bread (sourdough with 6% POLP). Significant nutritional improvements were observed by all adjuncts, in terms of TPC, AC, and phytate reduction (103 mg gallic acid/100 g, 232 mg Trolox/100 g, and 90.2%, respectively, for POLP3). In all cases, the higher the amount of adjunct, the better the results. Finally, the good sensory properties of the products indicate the suitability of the proposed adjuncts for sourdough breadmaking, while their application in freeze-dried, powdered form can facilitate commercial application.
Collapse
Affiliation(s)
- Stavros Plessas
- Laboratory of Food Processing, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Ioanna Mantzourani
- Laboratory of Food Processing, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athanasios Alexopoulos
- Laboratory of Food Biotechnology, Microbiology and Hygiene, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece; (M.A.); (N.K.)
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece; (M.A.); (N.K.)
| | | | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
20
|
Elkatry HO, El-Beltagi HS, Ramadan KMA, Ahmed AR, Mohamed HI, Al-Otaibi HH, Mahmoud MAA. The Chemical, Rheological, and Sensorial Characteristics of Arabic Bread Prepared from Wheat-Orange Sweet Potatoes Flour or Peel. Foods 2023; 12:foods12081658. [PMID: 37107453 PMCID: PMC10137974 DOI: 10.3390/foods12081658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The current study investigates the feasibility of preparing Arabic bread from wheat flour, sweet potato flour, or peeled sweet potatoes based on the nutritional values, technological characteristics, and sensory properties of the final products. First, we analyzed the proximate, elemental, total and individual phytochemical compositions of the raw materials and bread samples. The analysis showed that potassium, calcium, and phosphorus were higher in peels than pulp, in the same manner to the total phenolics, flavonoids, and anti-radical scavenging activities. Phenolic acids and flavonols were quantified, where p-coumaric, feruloyl-D-glucose, eucomic, gallic, and ferulic acids were measured as major phenolic acids in either peels or pulp flours, and their quantities were higher in the peels. Furthermore, we evaluated the effects of wheat substitution on the properties of the dough blends and their final bakery. The results indicated that the fortified samples' nutritional and rheological properties were significantly improved, while their sensory qualities were comparable to those of the control. Thereby, the fortified dough blends presented higher dough stabilities, indicating a wider range of applications. Additionally, after the heat treatment, the fortified breads maintained significantly higher total phenolic, flavonoid, anthocyanin, and carotenoid contents, and total antioxidant activities, implying their accessibility for humans upon consumption.
Collapse
Affiliation(s)
- Haiam O Elkatry
- Food and Nutrition Science Department, Agricultural Science and Food, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Home Economics Department, Faculty of Specific Education, Ain Shams University, Abassia, Cairo 11772, Egypt
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St, Giza 12613, Egypt
| | - Khaled M A Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo 11241, Egypt
| | - Abdelrahman R Ahmed
- Food and Nutrition Science Department, Agricultural Science and Food, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Home Economics Department, Faculty of Specific Education, Ain Shams University, Abassia, Cairo 11772, Egypt
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 1575, Egypt
| | - Hala Hazam Al-Otaibi
- Food and Nutrition Science Department, Agricultural Science and Food, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A A Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo 11241, Egypt
| |
Collapse
|
21
|
Pérez-Marroquín XA, Estrada-Fernández AG, García-Ceja A, Aguirre-Álvarez G, León-López A. Agro-Food Waste as an Ingredient in Functional Beverage Processing: Sources, Functionality, Market and Regulation. Foods 2023; 12:foods12081583. [PMID: 37107379 PMCID: PMC10137751 DOI: 10.3390/foods12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Waste generated from the agro-food industry represents a concerning environmental, social and economic issue. The Food and Agriculture Organization of the United Nations defines food waste as all food that decreases in quantity or quality to the extent that it is thrown out by food service providers and consumers. The FAO reports that 17% of worldwide food production may be wasted. Food waste may include fresh products, food close to the expiration date discarded by retailers and food products from household kitchens and eating establishments. However, food waste offers different possibilities to extract functional ingredients from different sources, such as dairy, cereals, fruits, vegetables, fibers, oils, dye and bioactive compounds. The optimization of agro-food waste as an ingredient will help in the development and innovation of food products to generate functional food and beverages to prevent and treat several diseases in consumers.
Collapse
Affiliation(s)
- Xóchitl Alejandra Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico
| | - Ana Guadalupe Estrada-Fernández
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco Km 3.5, Colonia Las Peñitas, Apan C.P. 43900, Hidalgo, Mexico
| | - Adelfo García-Ceja
- Instituto Tecnológico Superior de Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Venustiano Carranza C.P 73049, Puebla, Mexico
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico
| | - Arely León-López
- Instituto Tecnológico Superior de Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Venustiano Carranza C.P 73049, Puebla, Mexico
| |
Collapse
|
22
|
Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Partitioning of Antioxidants in Edible Oil-Water Binary Systems and in Oil-in-Water Emulsions. Antioxidants (Basel) 2023; 12:828. [PMID: 37107202 PMCID: PMC10135117 DOI: 10.3390/antiox12040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, partitioning of antioxidants in oil-water two-phase systems has received great interest because of their potential in the downstream processing of biomolecules, their benefits in health, and because partition constant values between water and model organic solvents are closely related to important biological and pharmaceutical properties such as bioavailability, passive transport, membrane permeability, and metabolism. Partitioning is also of general interest in the oil industry. Edible oils such as olive oil contain a variety of bioactive components that, depending on their partition constants, end up in an aqueous phase when extracted from olive fruits. Frequently, waste waters are subsequently discarded, but their recovery would allow for obtaining extracts with antioxidant and/or biological activities, adding commercial value to the wastes and, at the same time, would allow for minimizing environmental risks. Thus, given the importance of partitioning antioxidants, in this manuscript, we review the background theory necessary to derive the relevant equations necessary to describe, quantitatively, the partitioning of antioxidants (and, in general, other drugs) and the common methods for determining their partition constants in both binary (PWOIL) and multiphasic systems composed with edible oils. We also include some discussion on the usefulness (or not) of extrapolating the widely employed octanol-water partition constant (PWOCT) values to predict PWOIL values as well as on the effects of acidity and temperature on their distributions. Finally, there is a brief section discussing the importance of partitioning in lipidic oil-in-water emulsions, where two partition constants, that between the oil-interfacial, POI, and that between aqueous-interfacial, PwI, regions, which are needed to describe the partitioning of antioxidants, and whose values cannot be predicted from the PWOIL or the PWOCT ones.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos Bravo-Díaz
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
23
|
Brahmi F, Mateos-Aparicio I, Mouhoubi K, Guemouni S, Sahki T, Dahmoune F, Belmehdi F, Bessai C, Madani K, Boulekbache-Makhlouf L. Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity. Antioxidants (Basel) 2023; 12:antiox12030638. [PMID: 36978886 PMCID: PMC10045004 DOI: 10.3390/antiox12030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
This study deals with drying properties and focuses on the drying kinetics of potato peels (PP) by two processes, namely convection drying (CD) at various temperatures (40, 60, 80, 100, and 120 °C) and microwave drying (MD) at different powers (200, 400, 600, and 800 W). In addition, the effectiveness of the adopted processes was evaluated in terms of antioxidant contents and antioxidant capacity. A total of 22 mathematical models were undertaken to predict the drying kinetics, and the best model was selected based on the highest R2 values and the lowest χ2 and RMSE values. The Sledz model was the more appropriate for both methods with values of 0.9995 ≤ R2 ≤ 0.9999, χ2 = 0.0000, and 0.0054 ≤ RMSE ≤ 0.0030 for CD, and the results of MD were 0.9829 ≤ R2 ≤ 0.9997, 0.0000 ≤ χ2 ≤ 0.0010, and 0.0304 ≤ RMSE ≤ 0.0053. The best drying rates (DR) of PP were assigned to a temperature of 120 °C and a power of 600 W with values of 0.05 and 0.20 kg water/kg dw min, respectively. A potential explanation is that as PP’s moisture content decreased during the drying process, there was a drop in absorption, which led to a reduction in the DR. The energy consumption of both processes was assessed, and it rose with increasing temperature or power. The microwave process reduced the drying time, consumed lower energy, and presented a higher drying efficiency at a moderate power level compared to the convection process. Furthermore, MD preserved antioxidants better compared to CD and improved the antioxidant capacity. Therefore, the proposed microwave process for drying PP is suggested for its expected use in various fields, including the food processing industries.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Correspondence: (F.B.); (I.M.-A.); Tel.: +213-776-52-54-87 (F.B.); +34-91394-1807 (I.M.-A.)
| | - Inmaculada Mateos-Aparicio
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (F.B.); (I.M.-A.); Tel.: +213-776-52-54-87 (F.B.); +34-91394-1807 (I.M.-A.)
| | - Khokha Mouhoubi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Agri-Food Technologies Research Center, Targua Ouzemmour Rouad, Bejaia 06000, Algeria
| | - Sara Guemouni
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Tassadit Sahki
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Farid Dahmoune
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life and Earth Sciences Sciences, University of Bouira, Bouira 10000, Algeria
| | - Ferroudja Belmehdi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Chafiaa Bessai
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lila Boulekbache-Makhlouf
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
24
|
Potential of Polyphenols for Improving Sleep: A Preliminary Results from Review of Human Clinical Trials and Mechanistic Insights. Nutrients 2023; 15:nu15051257. [PMID: 36904255 PMCID: PMC10005154 DOI: 10.3390/nu15051257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Global epidemiologic evidence supports an interrelationship between sleep disorders and fruits and vegetable ingestion. Polyphenols, a broad group of plant substances, are associated with several biologic processes, including oxidative stress and signaling pathways that regulate the expression of genes promoting an anti-inflammatory environment. Understanding whether and how polyphenol intake is related to sleep may provide avenues to improve sleep and contribute to delaying or preventing the development of chronic disease. This review aims to assess the public health implications of the association between polyphenol intake and sleep and to inform future research. The effects of polyphenol intake, including chlorogenic acid, resveratrol, rosmarinic acid, and catechins, on sleep quality and quantity are discussed to identify polyphenol molecules that may improve sleep. Although some animal studies have investigated the mechanisms underlying the effects of polyphenols on sleep, the paucity of trials, especially randomized controlled trials, does not allow for conducting a meta-analysis to reach clear conclusions about the relationships among these studies to support the sleep-improving effects of polyphenols.
Collapse
|
25
|
Desai AS, Reddy VK, Saini RK. Circular economy and seafood and agro‐industrial waste valorisation for healthy foods. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ajay S. Desai
- Department of Fish Processing Technology and Microbiology, Faculty of Fisheries Science, College of Fisheries Science Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Dapoli Maharashtra 415712 India
| | - Vijay Kumar Reddy
- Department of Fish Processing Technology, College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab 141001 India
| | - Ramesh Kumar Saini
- Department of Bioresources and Food Science, College of Life and Environmental Sciences Konkuk University Seoul South Korea
| |
Collapse
|
26
|
Davaritouchaee M, Mosleh I, Dadmohammadi Y, Abbaspourrad A. One-Step Oxidation of Orange Peel Waste to Carbon Feedstock for Bacterial Production of Polyhydroxybutyrate. Polymers (Basel) 2023; 15:697. [PMID: 36771998 PMCID: PMC9920450 DOI: 10.3390/polym15030697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Orange peels are an abundant food waste stream that can be converted into useful products, such as polyhydroxyalkanoates (PHAs). Limonene, however, is a key barrier to building a successful biopolymer synthesis from orange peels as it inhibits microbial growth. We designed a one-pot oxidation system that releases the sugars from orange peels while eliminating limonene through superoxide (O2• -) generated from potassium superoxide (KO2). The optimum conditions were found to be treatment with 0.05 M KO2 for 1 h, where 55% of the sugars present in orange peels were released and recovered. The orange peel sugars were then used, directly, as a carbon source for polyhydroxybutyrate (PHB) production by engineered Escherichia coli. Cell growth was improved in the presence of the orange peel liquor with 3 w/v% exhibiting 90-100% cell viability. The bacterial production of PHB using orange peel liquor led to 1.7-3.0 g/L cell dry weight and 136-393 mg (8-13 w/w%) ultra-high molecular weight PHB content (Mw of ~1900 kDa) during a 24 to 96 h fermentation period. The comprehensive thermal characterization of the isolated PHBs revealed polymeric properties similar to PHBs resulting from pure glucose or fructose. Our one-pot oxidation process for liberating sugars and eliminating inhibitory compounds is an efficient and easy method to release sugars from orange peels and eliminate limonene, or residual limonene post limonene extraction, and shows great promise for extracting sugars from other complex biomass materials.
Collapse
Affiliation(s)
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York, NY 14853, USA
| |
Collapse
|
27
|
Paciulli M, Grimaldi M, Rinaldi M, Cavazza A, Flamminii F, Mattia CD, Gennari M, Chiavaro E. Microencapsulated olive leaf extract enhances physicochemical stability of biscuits. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Grzelczyk J, Oracz J, Gałązka-Czarnecka I. Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging. Foods 2022; 11:3776. [PMID: 36496585 PMCID: PMC9740201 DOI: 10.3390/foods11233776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The use of olive pomace from olive oil production is still insufficient. The lingering olive pomace is harmful to the environment. On the other hand, the world is increasingly polluted with plastic or by-products from the production of biodegradable products. Considering these two problems, the aim of this work was to develop a mixture and create biodegradable disposable tableware characterized by high antioxidant activity. The disposable tableware was made by mixing olive pomace with teff flour or/and sorghum groats and lecithin. Baking was carried out at the temperature of 180 °C. The best variant of the mixture for the preparation of disposable tableware was olive pomace, teff flour, sorghum groats and lecithin. These vessels were the toughest, with low water absorption and had a high antioxidant potential due to the high content of polyphenols and omega acids. Protecting the cups and bowls with beeswax had a positive effect on reducing water absorption.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | | | | |
Collapse
|
29
|
Balbinot Filho CA, Teixeira RF, Azevedo ML, Gautério FGA. Obtaining and characterization of olive (
Olea europaea
L.) pomace flour: an investigation on its applicability in gluten‐free cake formulations added with xanthan. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Clóvis A. Balbinot Filho
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
- Present address: Departamento de Engenharia Química e de Alimentos, EQA, Universidade Federal de Santa Catarina, 88040‐900 Florianópolis SC Brazil
| | - Renata F. Teixeira
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
- Present address: Departamento de Engenharia Química e de Alimentos, EQA, Universidade Federal de Santa Catarina, 88040‐900 Florianópolis SC Brazil
| | - Miriane L. Azevedo
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
| | - Fernanda G. A. Gautério
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
| |
Collapse
|
30
|
Parenti O, Albanese L, Guerrini L, Zanoni B, Zabini F, Meneguzzo F. Whole wheat bread enriched with silver fir (Abies alba Mill.) needles extract: technological and antioxidant properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3581-3589. [PMID: 34862604 DOI: 10.1002/jsfa.11704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The interest of consumers and market and scientific research for added-value foods obtained with environmentally sustainable productive chains is increasing. Silver fir (Abies alba Mill.) needles (SFNs), often by-products of forest management and logging, represent an unexploited source of bioactive compounds. RESULTS For the first time, SFN aqueous extract obtained through controlled hydrodynamic cavitation was used to enrich whole wheat flour bread. The first trial found that 35% SFNs extract addition was the absolute threshold of taste perception. The second trial investigated dough rheological properties and bread technological and antioxidant properties in samples enriched with 35% and 100% SFNs extract compared with the control (0% SFNs extract). SFNs extract significantly increased bread antioxidant capacity in both 35% and 100% SFN fresh breads by ~42.5% and ~87% respectively and in 100% SFNs bread samples after 72 h of storage by ~76%. Enrichment of 35% showed higher alveograph dough extensibility (~11%) and different bread texture in terms of hardness, springiness, and chewiness. Enrichment with 100% SFNs extract significantly improved dough and bread technological quality: it increased alveograph dough extensibility L (~18%), swelling index G (~8%), and flour strength W (~14%) and showed the highest increase in bread specific volume (~0.200 L kg-1 ). CONCLUSIONS SFNs aqueous extract produced with controlled hydrodynamic cavitation appeared a valuable technical material for the manufacturing of added-value and functional breads. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ottavia Parenti
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | - Lorenzo Albanese
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | - Lorenzo Guerrini
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, Legnaro, Italy
| | - Bruno Zanoni
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Florence, Italy
| | - Federica Zabini
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | | |
Collapse
|
31
|
Kahler Stragliotto L, Ferrari GT, Oliveira VR. Chemical, technological and sensory quality of pasta and bakery products made with biomass and green banana flour. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leticia Kahler Stragliotto
- Nutrition and Health – Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília 90035‐003 Porto Alegre RS Brazil
| | - Gabriel Tonin Ferrari
- Nutrition Course Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília 90035‐003 Porto Alegre RS Brazil
| | - Viviani Ruffo Oliveira
- Nutrition and Health – Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília 90035‐003 Porto Alegre RS Brazil
- Department of Nutrition Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília 90035‐003 Porto Alegre RS Brazil
| |
Collapse
|
32
|
Rainero G, Bianchi F, Rizzi C, Cervini M, Giuberti G, Simonato B. Breadstick fortification with red grape pomace: effect on nutritional, technological and sensory properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2545-2552. [PMID: 34676540 PMCID: PMC9298127 DOI: 10.1002/jsfa.11596] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Grape pomace (GP), a wine-making by-product rich in dietary fiber (DF) and total phenolic compounds (TPC), is a potential functional ingredient in the fortification of baked goods. RESULTS In the present study, fortified breadsticks samples were obtained by replacing wheat flour with 0, 5 and 10 g 100 g-1 of powdered GP (GPP). The GPP inclusion affected the rheological properties of the doughs by increasing the water absorption and tenacity (P) at the same time as reducing the extensibility (L), with a significant increase in the P/L value and a decrease in the swelling index (G) value and deformation energy (W). Textural characteristics of breadsticks were influenced by the GPP addition, showing a reduction in hardness and fracturability as the amount of GPP increased in the recipe. The GPP fortified breadsticks exhibited decreased pH, volume and specific volume values compared to the control. The TPC and the antioxidant capacity increased in GPP fortified breadsticks, whereas the increased amount of DF allowed the products to benefit from the claim 'high fiber content' at the highest level of GPP inclusion. The sensory evaluation revealed that GPP addition increased wine odor, acidity, bitterness, astringency and hardness, and decreased the regularity of alveolation and friability. Finally, the GPP fortified products achieved good sensorial acceptability. CONCLUSION GPP improved the nutritional values of fortified breadsticks and changed the rheology of dough and breadsticks' technological properties without affecting sensory acceptability. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Giada Rainero
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Corrado Rizzi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Mariasole Cervini
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Gianluca Giuberti
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | |
Collapse
|
33
|
Altinok E, Kurultay S, Boluk E, Atik DS, Kopuk B, Gunes R, Palabiyik I, Konar N, Toker OS. Investigation of using possibility of grape pomace in wafer sheet for wheat flour substitution. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Sefik Kurultay
- Department of Food Engineering Faculty of Agriculture Tekirdağ Namik Kemal University Tekirdağ Turkey
| | - Esra Boluk
- Department of Food Engineering Faculty of Agriculture Tekirdağ Namik Kemal University Tekirdağ Turkey
| | - Didem Sozeri Atik
- Department of Food Engineering Faculty of Agriculture Tekirdağ Namik Kemal University Tekirdağ Turkey
| | - Berkay Kopuk
- Department of Food Engineering Faculty of Agriculture Tekirdağ Namik Kemal University Tekirdağ Turkey
| | - Recep Gunes
- Food Engineering Department Engineering Faculty Kirklareli University Kirklareli Turkey
| | - Ibrahim Palabiyik
- Department of Food Engineering Faculty of Agriculture Tekirdağ Namik Kemal University Tekirdağ Turkey
| | - Nevzat Konar
- Department of Food Engineering Eskisehir Osmangazi University, Faculty of Agriculture Eskisehir Turkey
| | - Omer Said Toker
- Food Engineering Department Chemical and Metallurgical Engineering Faculty Yildiz Technical University Istanbul Turkey
| |
Collapse
|
34
|
Cassani L, Gomez-Zavaglia A. Sustainable Food Systems in Fruits and Vegetables Food Supply Chains. Front Nutr 2022; 9:829061. [PMID: 35252306 PMCID: PMC8891749 DOI: 10.3389/fnut.2022.829061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Fruits and vegetables wastes (e.g., peel fractions, pulps, pomace, and seeds) represent ~16% of total food waste and contribute ~6% to global greenhouse gas emissions. The diversity of the fruit-horticultural production in several developing countries and the excess of certain fruits or vegetables in the months of greatest production offer unique opportunities for adding value to these wastes (co-products). Within the scope of the Circular Economy, valorization of such wastes for the production of innovative bio-ingredients can open great market opportunities if efficiently exploited. In this context, this review deals with the current situation of wastes arising from fruits and vegetables (availability, characterization) as sources of valuable ingredients (fiber, polyphenols, pigments) suitable to be incorporated into food, pharmaceutical and cosmeceutical products. In addition, an integral and systematic approach including the sustainable technologies generally used at both lab and industrial scale for efficient extraction of bioactive compounds from fruits and vegetables wastes are addressed. Overall, this review provides a general updated overview regarding the situation of fruits and vegetables chain supplies in the post-pandemic era, offering an integrative perspective that goes beyond the recovery of fiber and phytochemicals from the previous mentioned wastes and focuses on whole processes and in their social and economic impacts.
Collapse
Affiliation(s)
- Lucía Cassani
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CONICET), Mar del Plata, Argentina
- Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
- *Correspondence: Andrea Gomez-Zavaglia
| |
Collapse
|
35
|
Prunus avium L. (Sweet Cherry) By-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prunus avium L. (sweet cherry) is one of the most appreciated fruit due to its organoleptic and nutritional value. Interestingly, cherry leaves, stems, and flowers are agri-food by-products rich in bioactive compounds that are mostly still unexploited. Stems and leaves have been used in folk medicine since ancient times. Recently, cherry flowers have also proved to be an interesting source of compounds with therapeutic properties. Phenolic compounds, namely hydroxycinnamic acids and flavonoids, are the most present phytochemicals in P. avium fruits and their by-products. These compounds have shown a good antioxidant potential to prevent oxidative stress-related diseases and glycemic control, fundamental in preventing and controlling diabetes mellitus. The present review summarizes the main phenolics found in P. avium stems, leaves, and flowers as compared to their fruits and describes their antioxidant and anti-hyperglycemic properties. Thus, these by-products are an accessible and low-cost source of bioactive constituents with interesting health-promoting properties, making their use promising in diabetes therapy.
Collapse
|
36
|
Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants (Basel) 2021; 10:antiox10071130. [PMID: 34356363 PMCID: PMC8301162 DOI: 10.3390/antiox10071130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract (GCPPE) was encapsulated in hydroxypropyl beta-cyclodextrin (HP-β-CD) by a spray-drying technique and the formation of an inclusion complex was confirmed by microscopy and infrared spectroscopy. The phenolic profile of the complex was analyzed by LC-ESI-LTQ-Orbitrap-MS and the encapsulation efficiency of the phenolic compounds was determined. A total of 42 compounds were identified, including stilbenes, flavonoids, and phenolic acids, and a complex of (epi)catechin with β-CD was detected, confirming the interaction between polyphenols and cyclodextrin. The encapsulation efficiency for the total extract was 80.5 ± 1.1%, with restrytisol showing the highest value (97.0 ± 0.6%) and (E)-resveratrol (32.7 ± 2.8%) the lowest value. The antioxidant capacity of the inclusion complex, determined by ORAC-FL, was 5300 ± 472 µmol TE/g DW, which was similar to the value obtained for the unencapsulated extract. This formulation might be used to improve the stability, solubility, and bioavailability of phenolic compounds of the GCPPE for water-soluble food and pharmaceutical applications.
Collapse
|
37
|
Bianchi F, Tolve R, Rainero G, Bordiga M, Brennan CS, Simonato B. Technological, nutritional and sensory properties of pasta fortified with agro‐industrial by‐products: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Federico Bianchi
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Roberta Tolve
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Giada Rainero
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale “A. Avogadro” Largo Donegani 2 Novara 28100 Italy
| | | | - Barbara Simonato
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona 37134 Italy
| |
Collapse
|
38
|
Modelling and Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Quinoa by Response Surface Methodology. Molecules 2021; 26:molecules26123616. [PMID: 34204777 PMCID: PMC8231643 DOI: 10.3390/molecules26123616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Phenolic compounds are currently the most investigated class of functional components in quinoa. However, great variability in their content emerged, because of differences in sample intrinsic and extrinsic characteristics; processing-induced factors; as well as extraction procedures applied. This study aimed to optimize phenolic compound extraction conditions in black quinoa seeds by Response Surface Methodology. An ultrasound-assisted extraction was performed with two different mixtures; and the effect of time; temperature; and sample-to-solvent ratio on total phenolic content (TPC) was investigated. Data were fitted to a second-order polynomial model. Multiple regression analysis and analysis of variance were used to determine the fitness of the model and optimal conditions for TPC. Three-dimensional surface plots were generated from the mathematical models. TPC at optimal conditions was 280.25 ± 3.94 mg of Gallic Acid Equivalent (GAE) 100 g−1 dm upon extraction with aqueous methanol/acetone, and 236.37 ± 5.26 mg GAE 100 g−1 dm with aqueous ethanol mixture. The phenolic profile of extracts obtained at optimal conditions was also investigated by HPLC. The two extracting procedures did not show different specificities for phenolic compounds but differed in the extraction yield.
Collapse
|
39
|
The Potential of Sun-Dried Grape Pomace as a Multi-Functional Ingredient for Herbal Infusion: Effects of Brewing Parameters on Composition and Bioactivity. Antioxidants (Basel) 2021; 10:antiox10040586. [PMID: 33920235 PMCID: PMC8070364 DOI: 10.3390/antiox10040586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Wine and by-products are essential elements of a Mediterranean diet and considered as a reservoir of bioactive compounds with various health effects. Grape pomace, an easily available natural material of low cost, shares a similar wealth of health benefiting bioactive phytochemicals. The objective of this study was to explore the utilization of grape pomace from Commandaria dessert wine as main ingredient for functional infusions. Therefore, the ratio of water to grape pomace powder (40–200 mL g−1), infusion time (3–15 min) and temperature (55–95 °C) were optimized in terms of composition and bioactivity. Multiple response optimization indicated that brewing 200 mL water per g of material for 12.2 min at 95 °C, was the optimum method for preparing the infusion. Results also revealed a significant impact of three parameters as well as quadratic and interactive effects on composition and bioactivity of infusions. Furthermore, the infusion presents antimicrobial effects against Listeria monocytogenes serotypes and other common food pathogenic bacteria. Finally, a sensory evaluation was performed to assess the organoleptic attributes of the infusion and its improvement, with the addition of Mediterranean aromatic plants. Overall, the present work describes a promising strategy for the re-use of sun-dried grape pomace as a functional ingredient of infusions.
Collapse
|
40
|
Krupa-Kozak U, Drabińska N, Bączek N, Šimková K, Starowicz M, Jeliński T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021; 10:819. [PMID: 33918917 PMCID: PMC8069453 DOI: 10.3390/foods10040819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
In comparison to conventional bread, gluten-free bread (GF) shows many post-baking defects and a lower nutritional and functional value. Although broccoli leaves are perceived as waste products, they are characterised by a high content of nutrients and bioactive compounds. The present study evaluated the nutritional value, technological quality, antioxidant properties, and inhibitory activity against the formation of advanced glycation end-products (AGEs) of GF enriched with broccoli leaf powder (BLP). Compared to the control, gluten-free bread with BLP (GFB) was characterised by a significantly (p < 0.05) higher content of nutrients (proteins and minerals), as well as improved specific volume and bake loss. However, what needs to be emphasised is that BLP significantly (p < 0.05) improved the antioxidant potential and anti-AGE activity of GFB. The obtained results indicate that BLP can be successfully used as a component of gluten-free baked products. In conclusion, the newly developed GFB with improved technological and functional properties is an added-value bakery product that could provide health benefits to subjects on a gluten-free diet.
Collapse
Affiliation(s)
- Urszula Krupa-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (N.D.); (N.B.); (K.Š.); (M.S.); (T.J.)
| | | | | | | | | | | |
Collapse
|
41
|
Rocchetti G, Rizzi C, Cervini M, Rainero G, Bianchi F, Giuberti G, Lucini L, Simonato B. Impact of Grape Pomace Powder on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Wheat Based Bread. Foods 2021; 10:foods10030507. [PMID: 33673445 PMCID: PMC8025819 DOI: 10.3390/foods10030507] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breads were prepared by substituting common wheat flour with 0 (GP0), 5 (GP5) and 10 (GP10) g/100 g (w/w) of grape pomace powder (GPP) and were analyzed for the phenolic profile bioaccessibility as well as the in vitro starch digestion during simulated digestion. The free and bound phenolic composition of native GPP and resulting breads were profiled using ultra-high-performance chromatography-quadrupole-time-of-flight (UHPLC-QTOF). The raw GPP was characterized by 190 polyphenols with the anthocyanins representing the most abundant class, accounting for 11.60 mg/g of cyanidin equivalents. Regarding the fortified bread, the greatest (p < 0.05) content in phenolic compounds was recorded for the GP10 sample (considering both bound and free fractions) being 127.76 mg/100 g dry matter (DM), followed by the GP5 (106.96 mg/100 g DM), and GP0 (63.76 mg/100 g DM). The use of GPP determined an increase of anthocyanins (considered the markers of the GPP inclusion), recording 20.98 mg/100 g DM in GP5 and 35.82 mg/100 g DM in GP10. The bioaccessibility of anthocyanins increased in both GP5 and GP10 breads when moving from the gastric to the small intestine in vitro digestion phase with an average value of 24%. Both the starch hydrolysis and the predicted glycemic index decreased with the progressive inclusion of GPP in bread. Present findings showed that GPP in bread could promote an antioxidant environment in the digestive tract and influence the in vitro starch digestion.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (G.R.); (L.L.)
| | - Corrado Rizzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (C.R.); (M.C.); (G.R.); (F.B.); (B.S.)
| | - Mariasole Cervini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (C.R.); (M.C.); (G.R.); (F.B.); (B.S.)
| | - Giada Rainero
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (C.R.); (M.C.); (G.R.); (F.B.); (B.S.)
| | - Federico Bianchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (C.R.); (M.C.); (G.R.); (F.B.); (B.S.)
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (G.R.); (L.L.)
- Correspondence:
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (G.R.); (L.L.)
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (C.R.); (M.C.); (G.R.); (F.B.); (B.S.)
| |
Collapse
|