1
|
Al‐allaq AA, Kashan JS. A review: In vivo studies of bioceramics as bone substitute materials. NANO SELECT 2022. [DOI: 10.1002/nano.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ali A. Al‐allaq
- Ministry of Higher Education and Scientific Research Office Reconstruction and Projects Baghdad Iraq
| | - Jenan S. Kashan
- Biomedical Engineering Department University of Technology Baghdad Iraq
| |
Collapse
|
2
|
D'Albis G, D'Albis V, Palma M, Plantamura M, Nizar AK. Use of hyaluronic acid for regeneration of maxillofacial bones. Genesis 2022; 60:e23497. [PMID: 35950678 DOI: 10.1002/dvg.23497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
Hyaluronic acid (HA) has been widely used in medicine and is currently of particular interest to maxillofacial surgeons. Several applications have been introduced, including those in which HA is used as a scaffold for bone regeneration, either alone or in combination with other grafting materials, to enhance bone growth. This review aims to analyze the available literature on the use of HA for maxillofacial bone regenerative procedures including socket preservation, sinus augmentation, and ridge augmentation. Medline and PubMed databases were searched for relevant reports published between January 2000 and April 2021. Nine publications describing the use of HA to augment bone volume were identified. Although further studies are needed, these findings are encouraging as they suggest that HA could be used effectively used, in combination with graft materials, in maxillofacial bone regenerative procedures. HA facilitates manipulation of bone grafts, improves handling characteristics and promotes osteoblast activity that stimulates bone regeneration and repair.
Collapse
Affiliation(s)
| | - Vincenzo D'Albis
- Postgraduate Program, Orthodontics, Tor Vergata University of Rome, Rome, Italy
| | - Micol Palma
- Preceptorship, Interdisciplinary Department of Medicine, Polyclinic of Bari, University of Bari, Bari, Italy
| | | | - Al Krenawi Nizar
- Postgraduate Program, Periodontology and Implantology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
3
|
Costa MM, Botticelli D, Moses O, Omori Y, Fujiwara S, Silva ER, Xavier SP. Maxillary Sinus Augmentation Using Ceramic Alloplastic Granules or Paste: An Experimental Study in Rabbits. Dent J (Basel) 2021; 9:65. [PMID: 34205201 PMCID: PMC8226577 DOI: 10.3390/dj9060065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Due to the lack of data comparing the biological behavior of two formulations, granules and paste, of alloplastic graft from microtomographic and histomorphometric points of view, the aim of the present experiment was to compare the histomorphometric and microtomographic healing of two formulations, i.e., granules (MR sites) or paste (MR-inject sites) of an alloplastic graft composed of a combination of beta-tricalcium phosphate and hydroxyapatite used for maxillary sinus lifting. METHODS A sinus lifting procedure was carried out bilaterally in 20 rabbits, and the elevated space was filled with either paste or granules of an alloplastic material. A collagen membrane was placed on the antrostomy and the animals were euthanized after 2 or 10 weeks, 10 animals each group. Microtomographic and histological analyses were performed. RESULTS Higher proportions of new bone formation were found at the MR, compared to the MR-inject sites both after 2 weeks (2.65 ± 2.89% vs. 0.08 ± 0.12%; p < 0.01) and 10 weeks of healing (34.20 ± 13.86 vs. 23.28 ± 10.35%; p = 0.022). CONCLUSIONS It was concluded that new bone formation was faster in the MR sites, compared to the MR-inject. However, a longer time of healing should be allowed to make final conclusions about the efficiency in bone formation of the paste formulation of the biomaterial used in the present study.
Collapse
Affiliation(s)
- Michael Medeiros Costa
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (M.M.C.); (E.R.S.); (S.P.X.)
| | | | - Ofer Moses
- Department of Periodontology and Dental Implantology, School of Dental Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuki Omori
- ARDEC Academy, 47923 Rimini, Italy; (D.B.); (Y.O.); (S.F.)
- Department of Oral Implantology, Osaka Dental University, Osaka 573-1144, Japan
| | | | - Erick Ricardo Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (M.M.C.); (E.R.S.); (S.P.X.)
| | - Samuel Porfirio Xavier
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil; (M.M.C.); (E.R.S.); (S.P.X.)
| |
Collapse
|
4
|
Badwelan M, Alkindi M, Alghamdi O, Ahmed A, Ramalingam S, Alrahlah A. Bone Regeneration Using PEVAV/β-Tricalcium Phosphate Composite Scaffolds in Standardized Calvarial Defects: Micro-Computed Tomographic Experiment in Rats. MATERIALS 2021; 14:ma14092384. [PMID: 34063709 PMCID: PMC8124713 DOI: 10.3390/ma14092384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 01/18/2023]
Abstract
Bone regeneration using beta-tricalcium phosphate (β-TCP) can be practiced using a biocomposite scaffold. Poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone)/β-tricalcium phosphate (PEVAV/β-TCP) composite scaffolds showed promising in vitro results. This study evaluated the bone regenerative potential of PEVAV/β-TCP biocomposite scaffolds in standardized calvarial defects in a rat model over 4 and 10 weeks. Bilateral calvarial defects (5 mm in diameter and about 1.5 mm thick, equivalent to the thickness of the calvaria) were created in 40 male Wistar albino rats. The defects were grafted with either commercially available β-TCP (positive control), PEVAV/β-TCP 70, or PEVAV/β-TCP 50, or left empty (negative control), depending on the group to which the animal was randomly assigned, to be covered before flap closure with resorbable collagen membrane (RCM). At 4 and 10 weeks post-surgery, the collected rat calvaria were evaluated using micro computed tomography (micro-CT) analysis, to assess the newly formed bone volume (NFBV), newly formed bone mineral density (NFBMD), and remaining graft volume (RGV). The results showed that calvarial defects grafted with the PEVAV/β-TCP biocomposite exhibited higher NFBV than did control defects, both at 4 and 10 weeks post-surgery. Furthermore, calvarial defects grafted with PEVAV/β-TCP 70 showed the highest NFBV among all grafting conditions, with a statistically significant difference recorded at 10 weeks post-surgery. The PEVAV/β-TCP composite scaffold showed potentiality for the regeneration of critical-sized calvarial bone defects in a rat model.
Collapse
Affiliation(s)
- Mohammed Badwelan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
- Correspondence:
| | - Mohammed Alkindi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
| | - Osama Alghamdi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
| | - Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
| | - Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
5
|
Shaheen MY, Basudan AM, Niazy AA, van den Beucken JJJP, Jansen JA, Alghamdi HS. Histological and Histomorphometric Analyses of Bone Regeneration in Osteoporotic Rats Using a Xenograft Material. MATERIALS 2021; 14:ma14010222. [PMID: 33466368 PMCID: PMC7795077 DOI: 10.3390/ma14010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
We evaluated the effect of osteoporotic induction after eight weeks of initial healing of bone defects grafted with a xenograft material in a rat model. Bone defects were created in the femoral condyles of 16 female Wistar rats (one defect per rat). The defects were filled with bovine bone (Inter-Oss) granules. After eight weeks of bone healing, rats were randomly ovariectomized (OVX) or sham-operated (SHAM). At 14 weeks of bone healing, all animals were euthanized. Bone specimens were harvested and processed for histological and histomorphometric analyses to assess new bone formation (N-BF%), remaining bone graft (RBG%) and trabecular bone space (Tb.Sp%) within the defect area. After 14 weeks of bone healing, histological evaluation revealed a significant alteration in trabecular bone in OVX rats compared to SHAM rats. There was lower N-BF% in OVX rats (22.5% ± 3.0%) compared to SHAM rats (37.7% ± 7.9%; p < 0.05). Additionally, the RBG% was significantly lower in OVX (23.7% ± 5.8%) compared to SHAM (34.8% ± 9.6%; p < 0.05) rats. Finally, the Tb.Sp% was higher in OVX (53.8% ± 7.7%) compared to SHAM (27.5% ± 14.3%; p < 0.05) rats. In conclusion, within the limitations of this study, inducing an osteoporotic condition in a rat model negatively influenced bone regeneration in the created bone defect and grafted with a xenograft material.
Collapse
Affiliation(s)
- Marwa Y. Shaheen
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (A.M.B.)
| | - Amani M. Basudan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (A.M.B.)
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Jeroen J. J. P. van den Beucken
- Department of Dentistry-Biomaterials, Radboudumc, P.O. Box 9101, 6500HB Nijmegen, The Netherlands; (J.J.J.P.v.d.B.); (J.A.J.)
| | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, P.O. Box 9101, 6500HB Nijmegen, The Netherlands; (J.J.J.P.v.d.B.); (J.A.J.)
| | - Hamdan S. Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (A.M.B.)
- Correspondence:
| |
Collapse
|
6
|
Stojanović S, AlKhoury H, Radenković M, Cvetković V, Jablonska M, Schmelzer CEH, Syrowatka F, Živković JM, Groth T, Najman S. Tissue response to biphasic calcium phosphate covalently modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. J Biomed Mater Res A 2020; 109:1353-1365. [PMID: 33128275 DOI: 10.1002/jbm.a.37126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Biphasic calcium phosphate (BCP) materials are widely employed as bone substitute materials due to their resorption/degradation properties. Inflammation after implantation of such materials represents a prerequisite for bone tissue repair and regeneration but can be also problematic if it is not only transient and if it is followed by fibrosis and scarring. Here, we modified BCP covalently with hyaluronan (HA) and heparin (Hep), glycosaminoglycans that possess anti-inflammatory properties. Beside the characterization of particle surface properties, the focus was on in vivo tissue response after subcutaneous implantation in mice. Histological analysis revealed a decrease in signs of inflammatory response to BCP when modified with either HA or Hep. Reduced vascularization after 30 days was noticed when BCP was modified with either HA or Hep with greater cellularity in all examined time points. Compared to plain BCP, expression of endothelial-related genes Flt1 and Vcam1 was higher in BCP-HA and BCP-Hep group at day 30. Expression of osteogenesis-related genes Sp7 and Bglap after 30 days was the highest in BCP group, followed by BCP-Hep, while the lowest expression was in BCP-HA group which correlates with collagen amount. Hence, coating of BCP particles with HA seems to suppress inflammatory response together with formation of new bone-like tissue, while the presence of Hep delays the onset of inflammatory response but permits osteogenesis in this subcutaneous bone-forming model. Transferring the results of this study to other coated materials intended for biomedical application may also pave the way to reduction of inflammation after their implantation.
Collapse
Affiliation(s)
- Sanja Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Hala AlKhoury
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Vladimir Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Magdalena Jablonska
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jelena M Živković
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
7
|
Shaheen MY, Basudan AM, Niazy AA, van den Beucken JJJP, Jansen JA, Alghamdi HS. Impact of Single or Combined Drug Therapy on Bone Regeneration in Healthy and Osteoporotic Rats. Tissue Eng Part A 2020; 27:572-581. [PMID: 32838702 DOI: 10.1089/ten.tea.2020.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Complications in bone regeneration in patients with systemic impaired bone metabolism (e.g., osteoporosis) represent a rapidly increasing clinical challenge. Alendronate and simvastatin are drugs commonly used to promote bone metabolism in osteoporotic conditions. The aim of this study was to evaluate initial bone regeneration within osseous defects grafted with beta-tricalcium phosphate (β-TCP) in adjunction with systemic coadministrations of alendronate and simvastatin (i.e., daily subcutaneous injection for 3 weeks) in healthy and osteoporotic rats. Eighty Wistar female rats were ovariectomized (OVX; n = 40) or sham operated (n = 40). Six weeks later, osseous defects (a 3-mm critical-sized defect) were created in the left femoral condyles and then grafted with β-TCP. From the day following graft installation, OVX and sham animals received for 3 weeks a daily subcutaneous injection of alendronate (50 μg/kg of body weight) and simvastatin (5 mg/kg of body weight), alone or in combination. A control group was included, which received subcutaneous saline administration. At the end of the 3 weeks, rats were euthanized and specimens (femoral condyles) were retrieved for histological evaluation and histomorphometric measurements, that is, bone area (BA%) and remaining bone graft (RBG%). In osteoporotic rats, 3 weeks of daily subcutaneous injection of combined therapy (alendronate plus simvastatin) led to a significant (p < 0.05) increase in BA% and a significant decrease in RBG% compared to healthy controls in osseous defects grafted with β-TCP (BA%: 28.6 ± 12.0 vs. 18.2 ± 7.6, RBG% 61.3 ± 11.1 vs. 70.7 ± 7.3). No significant differences in BA% and RBG% were found in the OVX rats for single treatments. Furthermore, healthy controls showed similar BA% and RBG% upon single or combined therapy compared to nontreated control rats. Daily coinjections (for 3 weeks) of alendronate plus simvastatin result in a significant enhancement of bone regeneration within osseous defects grafted with β-TCP in osteoporotic rats. Despite the expected effects on osteoporotic bone, our study did not confirm the hypothesized benefit of alendronate and simvastatin on bone regeneration in osseous defects in healthy conditions. The efficacy of the combination drug therapy on bone regeneration demands further investigation to elucidate molecular and cellular aspects underlying this therapy.
Collapse
Affiliation(s)
- Marwa Y Shaheen
- Department of Periodontics and Community Dentistry and College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Amani M Basudan
- Department of Periodontics and Community Dentistry and College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdurahman A Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hamdan S Alghamdi
- Department of Periodontics and Community Dentistry and College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|