1
|
Bai Z, Yin J, Cheng L, Song L, Zhang YY, Wang M. Multistress Interplay: Time and Duration of Ocean Acidification Modulate the Toxicity of Mercury and Other Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6487-6498. [PMID: 38579165 DOI: 10.1021/acs.est.3c09112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Luting Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Wei H, Xie D, Wang DZ, Wang M. A Meta-analysis Reveals Global Change Stressors Potentially Aggravate Mercury Toxicity in Marine Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:219-230. [PMID: 38152998 DOI: 10.1021/acs.est.3c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Growing evidence demonstrates that global change can modulate mercury (Hg) toxicity in marine organisms; however, the consensus on such effect is lacking. Here, we conducted a meta-analysis to evaluate the effects of global change stressors on Hg biotoxicity according to the IPCC projections (RCP 8.5) for 2100, including ocean acidification (-0.4 units), warming (+4 °C), and their combination (acidification-warming). The results indicated an overall aggravating effect (ln RRΔ = -0.219) of global change on Hg toxicity in marine organisms, while the effect varied with different stressors; namely, acidification potentially alleviates Hg biotoxicity (ln RRΔ = 0.117) while warming and acidification-warming have an aggravating effect (ln RRΔ = -0.328 and -0.097, respectively). Moreover, warming increases Hg toxicity in different trophic levels, i.e., primary producers (ln RRΔ = -0.198) < herbivores (ln RRΔ = -0.320) < carnivores (ln RRΔ = -0.379), implying increasing trends of Hg biomagnification through the food web. Notably, ocean hypoxia appears to boost Hg biotoxicity, although it was not considered in our meta-analysis because of the small sample size. Given the persistent global change and combined effects of these stressors in marine environments, multigeneration and multistressor research is urgently needed to fully disclose the impacts of global change on Hg pollution and its risk.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Cheng L, Bai Z, Wei H, Chen Y, Wang M. High and diurnally fluctuating carbon dioxide exposure produces lower mercury toxicity in a marine copepod. MARINE POLLUTION BULLETIN 2023; 192:115016. [PMID: 37182245 DOI: 10.1016/j.marpolbul.2023.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
Coastal waters have experienced fluctuations in partial pressure of carbon dioxide (pCO2) and mercury (Hg) pollution, yet little is known concerning how natural pCO2 fluctuations affect Hg biotoxicity. Here, a marine copepod Tigriopus japonicus was interactively exposed to different seawater pCO2 (ambient 400, steady elevated 1000, and fluctuating elevated 1000 ± 600 μatm) scenarios and Hg (control, 2 μg/L) treatments for 7 d. The results showed that elevated pCO2 decreased Hg bioaccumulation, and it was even more under fluctuating elevated pCO2 condition. We found energy depletion and oxidative stress under Hg-treated copepods, while combined exposure initiated compensatory response to alleviate Hg toxicity. Intriguingly, fluctuating acidification presented more immune defense related genes/processes in Hg-treated copepods when compared to steady acidification, probably linking with the greater decrease in Hg bioaccumulation. Collectively, understanding how fluctuating acidification interacts with Hg contaminant will become more crucial in predicting their risks to coastal biota and ecosystems.
Collapse
Affiliation(s)
- Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yao Chen
- Xiamen Marine Environmental Monitoring Central Station (SOA), Xiamen 361008, China.
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Oliveira H, Maulvault AL, Santos CP, Silva M, Bandarra NM, Valente LMP, Rosa R, Marques A, Anacleto P. Can marine heatwaves affect the fatty acid composition and energy budget of the tropical fish Zebrasoma scopas? ENVIRONMENTAL RESEARCH 2023; 224:115504. [PMID: 36796604 DOI: 10.1016/j.envres.2023.115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.
Collapse
Affiliation(s)
- Helena Oliveira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Ana L Maulvault
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2819-516 Caparica, Portugal.
| | - Catarina P Santos
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Marlene Silva
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Narcisa M Bandarra
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Luísa M P Valente
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Patrícia Anacleto
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
5
|
Gentès S, Minet A, Lopes C, Tessier E, Gassie C, Guyoneaud R, Swarzenski PW, Bustamante P, Metian M, Amouroux D, Lacoue-Labarthe T. In Vivo Mercury (De)Methylation Metabolism in Cephalopods under Different pCO 2 Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5761-5770. [PMID: 36976251 DOI: 10.1021/acs.est.2c08513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 μatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.
Collapse
Affiliation(s)
- Sophie Gentès
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Antoine Minet
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Claire Gassie
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Peter W Swarzenski
- Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
| | - Paco Bustamante
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Marc Metian
- Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Thomas Lacoue-Labarthe
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
6
|
Oliveira H, Maulvault AL, Castanho S, Repolho T, Valente LMP, Pousão-Ferreira P, Rosa R, Marques A, Anacleto P. Lack of detrimental effects of ocean acidification and warming on proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159491. [PMID: 36270380 DOI: 10.1016/j.scitotenv.2022.159491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = -0.3 units equivalent to ΔpCO2 ~ +600 μatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48-63 %), followed by excretion through faeces (36-51 %), respiration (approximately 1 %) and ammonia excretion (0.1-0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.
Collapse
Affiliation(s)
- Helena Oliveira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Ana Luísa Maulvault
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2819-516 Caparica, Portugal.
| | - Sara Castanho
- IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P., Aquaculture Research Station of Olhão (EPPO), Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal.
| | - Tiago Repolho
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Luísa M P Valente
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Pedro Pousão-Ferreira
- IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P., Aquaculture Research Station of Olhão (EPPO), Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal.
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Patrícia Anacleto
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
7
|
Kammann U, Nogueira P, Siegmund M, Schmidt N, Schmolke S, Kirchgeorg T, Hasenbein M, Wysujack K. Temporal trends of mercury levels in fish (dab, Limanda limanda) and sediment from the German Bight (North Sea) in the period 1995-2020. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:73. [PMID: 36334139 PMCID: PMC9637065 DOI: 10.1007/s10661-022-10655-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
As a toxic and harmful global pollutant, mercury (Hg) enters the marine environment through natural sources, and human activities. It bioaccumulates through the food chain and therefore, Hg is of great importance for environmental monitoring. This study aims to answer the question if Hg contamination in fish and sediment from the German Bight follows temporal trends. Therefore, 496 individual female dab (Limanda limanda) were analyzed. The Hg concentrations in the muscle of dab from the German Bight showed significant increase in function of time with an annual percental change of 1.4%, leading to a 41% increase in Hg contamination level within 25 years of monitoring. At the same time, Hg concentrations in sediment-analyzed in 86 samples-significantly decreased in the nearby North Sea environment. This surprising contradiction is shown in the present study and possible causes are discussed. It could be clearly shown that contamination in sediment and biota can follow completely different time courses and therefore, different environmental matrices should be considered in future monitoring studies. Age of the fish turned out to be a biological factor of particular importance for temporal trend analysis.
Collapse
Affiliation(s)
- Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Pedro Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Maike Siegmund
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Nicole Schmidt
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Stefan Schmolke
- Federal Maritime and Hydrographic Agency, Wüstland 2, 22589 Hamburg, Germany
| | - Torben Kirchgeorg
- Federal Maritime and Hydrographic Agency, Wüstland 2, 22589 Hamburg, Germany
| | - Matthias Hasenbein
- Federal Maritime and Hydrographic Agency, Wüstland 2, 22589 Hamburg, Germany
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| |
Collapse
|
8
|
Cui W, Liu J, Cao L, Dou S. Toxicological effects of cadmium on the immune response and biomineralization of larval flounder Paralichthys olivaceus under seawater acidification. CHEMOSPHERE 2022; 291:132919. [PMID: 34798117 DOI: 10.1016/j.chemosphere.2021.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Seawater acidification can cause threats to both calcifying and uncalcifying marine organisms, affecting their acid-base regulatory functions, immune system and biomineralization. Marine pollutants, such as cadmium (Cd) that is globally distributed in coastal ecosystems, do not affect organisms alone but commonly as combined stressors. To investigate the toxicological effects of Cd on the immune and biomineralization of marine fishes under seawater acidification, flounder Paralichthys olivaceus was exposed to seawater acidification (control (pH 8.10), 7.70 and 7.30) and Cd exposure (control (0.36 μg L-1), 0.01 and 0.15 mg L-1 Cd) for 49 days from embryonic stage until they became settled. Immune and biomineralization-related biomarkers of flounder at the end of exposure were investigated. Results showed that single seawater acidification and Cd exposure or combined exposure significantly affected the immune system-related enzyme activities. Specifically, lysozyme (LZM) activity was significantly inhibited by single seawater acidification and Cd exposure, indicating innate immunosuppression under two stressors. Contents of IgM, HSP70 and MT were induced by seawater acidification or Cd exposure, indicating a detoxification mechanism that responded to the stressors. The expressions of immune-related genes were upregulated (hsp70 and mt) or downregulated (lzm) under Cd exposure. Of the biomineralization-related enzymes, activities of carbonic anhydrase (CA), Na+/K+-ATPase and Ca2+-ATPase increased under seawater acidification and Cd exposure, a potential mechanism in response to changes of acid-base balance induced by the stressors. Generally, immune and biomineralization of the flounder responded more sensitively to Cd exposure than seawater acidification. Seawater acidification aggravated the toxicological effects of Cd exposure on the two physiological functions, while high Cd exposure augmented their responses to seawater acidification.
Collapse
Affiliation(s)
- Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
9
|
Sinkus W, White B, Reed L, Shervette V. Mercury accumulation in reef fishes: a comparison among red grouper, scamp, and gag of the Atlantic southeastern US and evaluation of "grouper" consumption guidelines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:574. [PMID: 34392425 DOI: 10.1007/s10661-021-09299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
In fish consumption advisories pertaining to Hg, grouper species in the family Serranidae are often lumped together and labeled generically as Grouper. However, grouper species vary considerably in growth rate, maximum age, and maximum size. This study examined the variability of Hg concentrations and bioaccumulation rates (increase of Hg concentrations in relation to age) for populations of three long-lived, slow-growing, protogynous hermaphrodite grouper species, gag Mycteroperca microlepis, scamp M. phenax, and red grouper Epinephelus morio, which are commercially and recreationally important in the offshore waters of the US southeastern region. A total of 268 samples from the three grouper species were processed for Hg analysis from 2013-2015. Concentrations of Hg ranged from 0.03 to 0.87 ppm wet weight, with a mean of 0.30 ppm. Gag accumulated Hg at a faster rate (as measured by the increase of Hg with fish age) than the other two species. Size, age, and δ15N were significant predictors for Hg in the two Mycteroperca species, while size and age were significant predictors for Hg in red grouper. Two of the three species had mean Hg concentrations within the one meal per week "Good Choices" consumption category (red grouper and scamp), and one species (gag) had a mean Hg level within the two meals per week "Good Choices" consumption category as advised by the US EPA and US FDA. These results support the separation of grouper species in advisories.
Collapse
Affiliation(s)
- Wiley Sinkus
- College of Charleston: Grice Marine Laboratory, 205 Fort Johnson Rd, Charleston, SC, 29412, USA
- South Carolina Department of Natural Resources Marine Resources Research Institute, 217 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Byron White
- South Carolina Department of Natural Resources Marine Resources Research Institute, 217 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - LouAnn Reed
- National Oceanic and Atmospheric Administration Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Virginia Shervette
- Department of Biology/Geology, University of South Carolina, Aiken 471 University Pkwy, Aiken, SC, 29801, USA.
| |
Collapse
|
10
|
Galvao P, Sus B, Lailson-Brito J, Azevedo A, Malm O, Bisi T. An upwelling area as a hot spot for mercury biomonitoring in a climate change scenario: A case study with large demersal fishes from Southeast Atlantic (SE-Brazil). CHEMOSPHERE 2021; 269:128718. [PMID: 33189394 DOI: 10.1016/j.chemosphere.2020.128718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Data concerning the monomethylmercury (MeHg) bioaccumulation in marine biota from Southeast Atlantic Ocean are scarce. This study purchased large specimens of demersal fishes from an upwelling region: Warsaw grouper (Epinephelus nigritus), Dusky grouper (Epinephelus marginatus) and Namorado sandperch (Pseudopercis numida). The authors addressed the bioaccumulation and toxicokinetic of mercury in fish organs, and the toxicological risk for human consumption of this metal in the muscle tissues accessed. Additionally, the present study discussed the possible implications of shifts in key variables of the environment related to a climate-changing predicted scenario, to the mercury biomagnification in a tropical upwelling system. The muscle was the main stock of MeHg, although the highest THg concentrations have been found in liver tissue. Regarding the acceptable maximum level (ML = 1 mg kg-1), E. nigritus and E. marginatus showed 22% of the samples above this limit. Concerning P. numida, 77% were above 0.5 mg kg-1, but below the ML. The %MeHg in liver and muscle showed no significative correlations, which suggest independent biochemical pathways to the toxicokinetic of MeHg, and constrains the indirect assessment of the mercury contamination in the edible tissue by the liver analyses. The present study highlights the food web features of a tropical upwelling ecosystem that promote mercury biomagnification. Additionally, recent studies endorse the enhancement of upwelling phenomenon due to the climate global changes which boost the pumping of mercury enriched water to the oceanic upper layer. Therefore, the upwelling areas might be hot spots for MeHg monitoring in marine biota.
Collapse
Affiliation(s)
- Petrus Galvao
- Programa de Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Bruna Sus
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| | - Alexandre Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| | - Olaf Malm
- Programa de Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Tatiana Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores Prof(a). Izabel Gurgel (MAQUA), Faculdade de Oceanografia - Universidade do Estado do Rio de Janeiro, 20550-013, Rio de Janeiro, RJ, Brazil
| |
Collapse
|