1
|
So YH, Mishra D, Gite S, Sonawane R, Waite D, Shaikh R, Vora LK, Thakur RRS. Emerging trends in long-acting sustained drug delivery for glaucoma management. Drug Deliv Transl Res 2025:10.1007/s13346-024-01779-4. [PMID: 39786666 DOI: 10.1007/s13346-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress. Topical formulations are often used in glaucoma treatment, whereas surgical measures are used in acute glaucoma cases. For most patients, long-term glaucoma treatments are given. Poor patient compliance and low bioavailability are often associated with topical therapy, which suggests that sustained-release, long-acting drug delivery systems could be beneficial in managing glaucoma. This review summarizes the eye's physiology, the pathogenesis of glaucoma, current treatments, including both pharmacological and nonpharmacological interventions, and recent advances in long-acting drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yin Ho So
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Sandip Gite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahul Sonawane
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - David Waite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahamatullah Shaikh
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
2
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2024:10.1007/s13346-024-01756-x. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
3
|
Chawnani D, Ranch K, Patel C, Jani H, Jacob S, Al-Tabakha MM, Boddu SHS. Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2884-2908. [PMID: 39155730 DOI: 10.1080/09205063.2024.2391233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.
Collapse
Affiliation(s)
- Disha Chawnani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Chirag Patel
- Deparment of Pharmacology, L. M. College of Pharmacy, Ahmedabad, India
| | - Harshilkumar Jani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Moawia M Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
4
|
Abdullah Aziz M, Kuppusamy R, Mazumder K, Hui A, Maulvi F, Stapleton F, Willcox M. Absorption and attachment of atropine to etafilcon A contact lenses. Cont Lens Anterior Eye 2024; 47:102246. [PMID: 38851947 DOI: 10.1016/j.clae.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Myopia (short-sightedness) is a growing vision problem worldwide. Currently atropine eye drops are used to control the progression of myopia but these suffer from potential lack of bioavailability and low ocular residence time. Commercially available myopia control contact lenses are also used to limit myopia progression, but neither atropine nor contact lenses individually completely stop progression. Development of myopia control contact lenses which could deliver therapeutic doses of atropine is thus desirable and may provide increased efficacy. This study was designed to explore the feasibility of attaching atropine to etafilcon A contact lenses through an esterification reaction. METHODS Carboxylic acid groups on etafilcon A contact lenses were quantified using Toluidine Blue O. The carboxylic acid groups in etafilcon A contact lenses were activated using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC-HCl) and N-hydroxysuccinimide (NHS) crosslinkers after which atropine was added to undergo potential binding via esterification. Atropine was released from lenses by alkaline hydrolysis. Reverse phase high performance liquid chromatography (HPLC) was used to detect and quantify the released atropine and its degradation products in solution. Contact lenses that had not been activated by EDC-NHS (controls) were also examined to determine the amount of atropine that could be absorbed rather than chemically bound to lenses. RESULTS Each etafilcon A contact lens contained 741.1 ± 5.5 µg carboxylic acid groups which may be available for esterification. HPLC had a limit of detection for atropine of 0.38 µg/mL and for tropic acid, an atropine degradation product, of 0.80 µg/mL. The limits of quantification were 1.16 µg/mL for atropine and 2.41 µg/mL for tropic acid in NH4HCO3. The etafilcon A lenses adsorbed up to 7.69 μg atropine when incubated in a 5 mg/mL atropine solution for 24 h. However, there was no evidence that atropine could be chemically linked to the lenses, as washing in a high concentration of NaCl removed all the atropine from the contact lenses with no atropine being subsequently released from the lenses after incubating in 0.01 N NH4HCO3. CONCLUSIONS Etafilcon A contact lenses contain free carboxylic acids which may be an appropriate option for attaching drugs such as atropine. Etafilcon A lenses adsorbed up to 7.69 μg atropine, which would be more than enough to deliver atropine to eyes to control myopia. However, atropine could not be chemically bound to the carboxylic acids of the etafilcon A lenses using this methodology.
Collapse
Affiliation(s)
- Md Abdullah Aziz
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; School of Chemistry, University of Sydney, Sydney, Australia
| | - Kishor Mazumder
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Alex Hui
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; Centre for Ocular Research and Education, School of Optometry & Vision Science, University of Waterloo, Canada
| | - Furqan Maulvi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Tripathi S, Yadav KS. Development of brimonidine niosomes laden contact lenses for extended release and promising delivery system in glaucoma treatment. Daru 2024; 32:161-175. [PMID: 38158475 PMCID: PMC11087387 DOI: 10.1007/s40199-023-00500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Increased intraocular pressure is a common symptom of glaucoma. In severe circumstances, it may result in loss of eyesight. Glaucoma treatment is difficult due to ocular physiological barriers that prevent medications from reaching the afflicted area. Traditional formulations (eye drops) have a short residence period and are rapidly drained away via the nasolacrimal duct, resulting in increased adverse drug responses and lower efficacy. The usage of nanoparticles such as niosomes could be one potential answer to these problems. While niosomes improve drug penetration, they have little effect on ocular retention of the medication. Contact lenses containing niosomes can assist to overcome this disadvantage. OBJECTIVE This study aims to prepare and evaluate Brimonidine niosomes laden contact lenses for the treatment of Glaucoma. METHODS Brimonidine niosomes were prepared using thin film hydration method and evaluated. The contact lenses were soaked in the niosomal formulation at varying intervals (3-10 days). Thereafter, the contact lenses were evaluated for %transmittance, %swelling index, drug quantification and in vitro drug release. The pharmacodynamic studies were conducted to assess the reduction in intraocular pressure (IOP) in albino rabbits. The research compared the results of the reduction in intraocular pressure caused by Brimonidine niosomes laden contact lenses with a marketed preparation of niosomes. RESULTS Higher concentration of the drug was loaded in contact lenses loaded with Brimonidine niosomes compared to the marketed formulation, by soaking method. The contact lenses exhibited an optimal %transmittance of 98.02 ± 0.36 and %swelling index of 50.35 ± 0.57. Increase in the soaking time up to 7 days led to an increase in the drug concentration in the contact lenses. However, no further increase was observed after the 7th day due to saturation of the contact lenses. Brimonidine niosomes laden contact lenses provided a reduction in intraocular pressure that was similar to the marketed preparation. Further, the contact lenses provided extended release up to 20 h. CONCLUSION Brimonidine niosomes laden contact lenses exhibited superior drug loading through the soaking method, displaying optimal %transmittance and %swelling index. Soaking for 7 days increased drug concentration in contact lenses with no further increase due to saturation. These lenses reduced intraocular pressure like the marketed formulation, offering extended release for 20 h.
Collapse
Affiliation(s)
- Shresthi Tripathi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to Be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to Be University), Mumbai, India.
| |
Collapse
|
6
|
Yang H, Zhang F, Fan Y, Zhang J, Fang T, Xing D, Zhen Y, Nie Z, Liu Y, Wang D, Li J. Co-delivery of Brinzolamide and Timolol from Micelles-laden Contact Lenses: In vitro and In Vivo Evaluation. Pharm Res 2024; 41:531-546. [PMID: 38366235 DOI: 10.1007/s11095-024-03672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Traditional eye drops exhibit a modest bioavailability ranging from 1 to 5%, necessitating recurrent application. Thus, a contact lens-based drug delivery system presents substantial benefits. Nonetheless, pharmaceutical agents exhibiting poor solubility may compromise the quintessential characteristics of contact lenses and are, consequently, deemed unsuitable for incorporation. To address this issue, the present study has engineered a novel composite drug delivery system that amalgamates micellar technology with contact lenses, designed specifically for the efficacious conveyance of timolol and brinzolamide. METHODS Utilizing mPEG-PCL as the micellar material, this study crafted mPEG-PCL micelles loaded with brinzolamide and timolol through the film hydration technique. The micelle-loaded contact lens was fabricated employing the casting method; a uniform mixture of HEMA and EGDMA with the mPEG-PCL micelles enshrouding brinzolamide and timolol was synthesized. Following the addition of a photoinitiator, 50 μL of the concoction was deposited into a contact lens mold. Subsequently, the assembly was subjected to polymerization under 365 nm ultraviolet light for 35 min, resulting in the formation of the micelle-loaded contact lenses. RESULTS In the present article, we delineate the construction of a micelle-loaded contact lens designed for the administration of brinzolamide and timolol in the treatment of glaucoma. The study characterizes crucial properties of the micelle-loaded contact lenses, such as transmittance and ionic permeability. It was observed that these vital attributes meet the standard requirements for contact lenses. In vitro release studies revealed that timolol and brinzolamide could be gradually liberated over periods of up to 72 and 84 h, respectively. In vivo pharmacodynamic evaluation showed a significant reduction in intraocular pressure and a relative bioavailability of 10.84 times that of commercially available eye drops. In vivo pharmacokinetic evaluation, MRT was significantly increased, and the bioavailability of timolol and brinzolamide was 2.71 and 1.41 times that of eye drops, respectively. Safety assessments, including in vivo irritation, histopathological sections, and protein adsorption studies, were conducted as per established protocols, confirming that the experiments were in compliance with safety standards. IN CONCLUSION The manuscript delineates the development of a safe and efficacious micelle-loaded contact lens drug delivery system, which presents a novel therapeutic alternative for the management of glaucoma.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Faxing Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yingzhen Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Dandan Xing
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Zhihao Nie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China.
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
7
|
Baghban R, Talebnejad MR, Meshksar A, Heydari M, Khalili MR. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J Nanobiotechnology 2023; 21:402. [PMID: 37919748 PMCID: PMC10621182 DOI: 10.1186/s12951-023-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Despite the existence of numerous eye drops in the market, most of them are not sufficiently effective because of quick clearance and the barriers within the eye. To increase the delivery of the drugs to the eye, various new formulations have been explored in recent decades. These formulations aim to enhance drug retention and penetration, while enabling sustained drug release over extended periods. One such innovative approach is the utilization of contact lenses, which were originally designed for cosmetic purposes and vision correction. Contact lenses have appeared as a promising formulation for ocular drug delivery, as they can increase the bioavailability of drugs in the eye and diminish unwanted side effects. They are specifically appropriate for treating chronic eye conditions, making them an area of interest for researchers in the field of ophthalmology. This review outlines the promising potential of nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma. It classifies therapeutic approaches based on nanomaterial type, summarizes diagnostic advances, discusses improvement of contact lenses properties, covers marketing perspectives, and acknowledges the challenges of these innovative contact lenses for glaucoma management.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aidin Meshksar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
9
|
Hosseini MS, Mohseni M, Naseripour M, Mirzaei M, Bagherzadeh K, Alemezadeh SA, Mehravi B. Synthesis and evaluation of modified lens using plasma treatment containing timolol-maleate loaded lauric acid-decorated chitosan-alginate nanoparticles for glaucoma. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1793-1812. [PMID: 36872905 DOI: 10.1080/09205063.2023.2187204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Reducing intraocular pressure (IOP) with eye drops is one of the most common ways to control glaucoma. Low bioavailability and high frequency of administration in eye drops are major challenges in ocular pharmacotherapy. Contact lenses have attracted the attention of scientists in recent decades as an alternative method. In this study, with the aim of long-term drug delivery and better patient compatibility, contact lenses with surface modification and nanoparticles were used. In this study, timolol-maleate was loaded into polymeric nanoparticles made of chitosan conjugate with lauric acid and sodium alginate. Then silicon matrix was mixed with a curing agent (10:1), and the suspension of nanoparticles was added to the precursor and cured. Finally, for surface modification, the lenses were irradiated with oxygen plasma at different exposure times (30, 60, and 150 s) and soaked in different BSA concentrations (1, 3, and 5% w/v). The results showed nanoparticles with a size of 50 nm and a spherical shape were synthesized. The best surface modification of the lenses was for 5 (% w/v) albumin concentration and 150 s exposure time, which had the highest increase in hydrophilicity. Drug release from nanoparticles continued for 3 days and this amount increased to 6 days after dispersion in the modified lens matrix. The drug model and kinetic study show the Higuchi model completely supported the release profile. This study represents the novel drug delivery system to control intra-ocular pressure as a candidate platform for glaucoma treatment. Improved compatibility and drug release from the designed contact lenses would prepare new insight into the mentioned disease treatment.
Collapse
Affiliation(s)
- Maryam Sadat Hosseini
- Medical Nanotechnology Department, Advanced Technologies Faculty, Iran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mohseni
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Iran Ministry of Health and Medical Education, Deputy Ministry for Education, Tehran, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Bita Mehravi
- Medical Nanotechnology Department, Advanced Technologies Faculty, Iran University of Medical Sciences, Tehran, Iran
- Finetech in Medicine Research Center, Iran University of Medical, Tehran, Iran
| |
Collapse
|
10
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
11
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
12
|
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, Ghanbarzadeh M, Fadel D, Barnett M, Ta CN, Leblanc RM, Chauhan A, Abbasi F. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm 2023; 638:122740. [PMID: 36804524 DOI: 10.1016/j.ijpharm.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The eye is one of the most important organs in the human body providing critical information on the environment. Many corneal diseases can lead to vision loss affecting the lives of people around the world. Ophthalmic drug delivery has always been a major challenge in the medical sciences. Since traditional methods are less efficient (∼ 5%) at delivering drugs to ocular tissues, contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. The main techniques used to achieve sustained release are discussed in this review, including soaking in drug solutions, incorporating drug into multilayered contact lenses, use of vitamin E barriers, molecular imprinting, nanoparticles, micelles and liposomes. The most clinically relevant results on different eye pathologies are presented. In addition, this review summarizes the benefits of contact lenses over eye drops, strategies for incorporating drugs into lenses to achieve sustained release, results of in vitro and in vivo studies, and the recent advances in the commercialization of therapeutic contact lenses for allergic conjunctivitis.
Collapse
Affiliation(s)
- Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Fatemeh Hassanpour
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | | | - Sepideh K Kalajahi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Paria H Milani
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mahsa Ghanbarzadeh
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Daddi Fadel
- Center for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, CO, USA.
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran.
| |
Collapse
|
13
|
Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. Eur J Pharm Biopharm 2022; 180:48-62. [PMID: 36167272 DOI: 10.1016/j.ejpb.2022.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022]
Abstract
Despite the advances in the field of pharmaceutical materials and technology, topical administration remains a method of choice for the treatment of eye diseases such as glaucoma, with eye drops being a leading dosage form. Their main disadvantage is a very short drug residence time and thus poor drug bioavailability, leading to the necessity of continuous repeated dosing. Mucoadhesive electrospun nanofibers are promising candidates for overcoming these challenges, while still benefiting from topical ocular administration. As an alternative for eye drops, a nanofibrous drug delivery system (DDS) for the delivery of brinzolamide (BRZ), based on β-cyclodextrin (β-CD), hydroxypropyl cellulose (HPC) and polycaprolactone (PCL), was designed. The results showed β-CD/BRZ guest-host interactions, successful drug incorporation into the nanofibers, and the possibility of more accurate dosing in comparison with the control eye drops. Drug permeation through sheep corneas was almost linear in time, achieving therapeutic concentrations in the receptor medium, and mucoadhesion to sheep eye mucosa was relatively high in case of formulations with high HPC content. All formulations were biocompatible, their mechanical properties were sufficient to handle them without caution and UV irradiation was suitable to reduce bioburden of the fibers matrix, yet no antibacterial properties of BRZ were observed.
Collapse
|
14
|
Mun J, Kim TY, Myung D, Hahn SK. Smart contact lens containing hyaluronate-rose bengal conjugate for biophotonic myopia vision correction. Biomater Sci 2022; 10:4997-5005. [PMID: 35815427 DOI: 10.1039/d2bm00584k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the collagen layer weakens with increasing age or certain diseases such as keratoconus and myopia, the mechanical property of the collagen layer decreases with corneal deformation. To circumvent these problems, the corneal collagen has been crosslinked with the photosensitizer riboflavin under UV light after de-epithelialization. However, this treatment with riboflavin and UV light can cause notable damage to the eye. Here, the biocompatible rose bengal (RB) dye was conjugated to hyaluronic acid (HA) to enhance the corneal permeability, which can be activated by safe green light with a wavelength of 530 nm. Two-photon microscopy revealed the deep tissue penetration of the HA-RB conjugate in comparison with RB. Collagen fibrillogenesis, ex vivo tensile test, and ex vivo histological analysis confirmed the effective collagen crosslinking by HA-RB conjugate and the light irradiation. Furthermore, we developed a smart contact lens for on-demand HA-RB conjugate delivery from the reservoir embedded in the contact lens. Taken together, we could envision the feasibility of a smart contact lens for biophotonic myopia vision correction.
Collapse
Affiliation(s)
- Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
15
|
Melatonin-Eluting Contact Lenses Effect on Tear Volume: In Vitro and In Vivo Experiments. Pharmaceutics 2022; 14:pharmaceutics14051019. [PMID: 35631605 PMCID: PMC9147799 DOI: 10.3390/pharmaceutics14051019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The purpose of this study was to synthesize melatonin-eluting contact lenses (CLs) and evaluate both the ocular kinetics of the released melatonin and its effect on tear volume and intraocular pressure. (2) Methods: In vitro, melatonin-eluting CLs were synthesized by using non-functionalized (HEMA) and functionalized (HEMA/APMA) monomers. In vivo, a short-term prospective and randomized study was performed on 15 rabbits divided into two groups: 12 rabbits wearing functionalized CLs and 3 rabbits without CLs as a control. The melatonin levels in tears, aqueous humor, vitreous body and retina, tear volume, and intraocular pressure were measured for 8 h. (3) Results: In vitro, both monomers did not show differences in terms of melatonin loading and release (p ≥ 0.05). In vivo, the melatonin concentration was elevated in tears and aqueous humor after 2 and 4 h of wearing CLs, respectively (p < 0.05). Additionally, the CLs increased tear volume for 2 h (p < 0.05). (4) Conclusions: The melatonin-eluting CLs released their content over the ocular surface for at least 2 h, which was associated with a secretagogue effect on tear volume. However, the increased amount of melatonin found in the aqueous humor had no effect on intraocular pressure.
Collapse
|
16
|
Bodoki AE, Iacob BC, Dinte E, Vostinaru O, Samoila O, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Ocular Therapy. Polymers (Basel) 2021; 13:polym13213649. [PMID: 34771205 PMCID: PMC8588458 DOI: 10.3390/polym13213649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Although the human eye is an easily accessible sensory organ, it remains a challenge for drug administration due to the presence of several anatomical and physiological barriers which limit the access of drugs to its internal structures. Molecular imprinting technology may be considered the avant-garde approach in advanced drug delivery applications and, in particular, in ocular therapy. In fact, molecularly imprinted polymers hold the promise to compensate for the current shortcomings of the available arsenal of drug delivery systems intended for ocular therapy. The present manuscript aims to review the recent advances, the current challenges and most importantly to raise awareness on the underexplored potential and future perspectives of molecularly imprinted polymer-based drug delivery systems intended for the treatment of eye diseases.
Collapse
Affiliation(s)
- Andreea E. Bodoki
- Department of General and Inorganic Chemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Bogdan-C. Iacob
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine & Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hatieganu” University of Medicine & Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Hatieganu” University of Medicine & Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ovidiu Samoila
- Ophthalmology Clinic Cluj, “Iuliu Hatieganu” University of Medicine & Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine & Pharmacy, 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597256 (ext. 2838)
| |
Collapse
|
17
|
Rykowska I, Nowak I, Nowak R. Soft Contact Lenses as Drug Delivery Systems: A Review. Molecules 2021; 26:5577. [PMID: 34577045 PMCID: PMC8472272 DOI: 10.3390/molecules26185577] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review describes the role of contact lenses as an innovative drug delivery system in treating eye diseases. Current ophthalmic drug delivery systems are inadequate, particularly eye drops, which allow about 95% of the active substance to be lost through tear drainage. According to the literature, many interdisciplinary studies have been carried out on the ability of contact lenses to increase the penetration of topical therapeutic agents. Contact lenses limit drug loss by releasing the medicine into two layers of tears on either side of the contact lens, eventually extending the time of contact with the ocular surface. Thanks to weighted soft contact lenses, a continuous release of the drug over an extended period is possible. This article reviewed the various techniques to deliver medications through contact lenses, examining their advantages and disadvantages. In addition, the potential of drug delivery systems based on contact lenses has been extensively studied.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Rafał Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
18
|
In Vivo Efficacy of Contact Lens Drug-Delivery Systems in Glaucoma Management. A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adherence is crucial in medical glaucoma therapy, although half of the patients skip eyedrops. In recent years alternative drug-delivery systems have been developed. One of the most promising seems the contact lens (CL). This systematic review aims to present the in vivo efficacy of different CL drug-delivery systems. A total of 126 studies were identified following a literature search adhering to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. After full-text evaluation, 19 studies about CL drug-delivery systems were included. To date, the following drug-delivery systems have been investigated in vivo: drug-soaked CL, CL with physical barriers (vitamin E), molecularly imprinted CL, CL with implants, and nanoparticle-loaded CL. Nanoparticle-loaded CL and CL with implants seem the most promising drug-delivery systems, although initial burst drug release and patient acceptance may limit their widespread use in current practice. Clinical trials are warranted to understand the role of CL as a drug-delivery system in improving glaucomatous patient care.
Collapse
|