1
|
Ashrafi AM, Selcuk O, Mukherjee A, Unal DN, Kurbanoglu S, Uslu B, Jurica J, Pekarkova J, Richtera L, Adam V. Rapid determination of uracil in biological fluids at mercury thin film electrode for early detection of potential 5-fluorouracil toxicity due to dihydropyrimidine dehydrogenase deficiency. Biosens Bioelectron 2024; 262:116545. [PMID: 38971040 DOI: 10.1016/j.bios.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Determination of plasma uracil was reported as a method for evaluation of Dihydropyrimidine dehydrogenase (DPD) activity that is highly demanded to ensure the safe administration of 5-fluorouracil (5-FU)-based therapies to cancer patients. This work reports the development of a simple electroanalytical method based on adsorptive stripping square wave voltammetry (AdSWV) at mercury film-coated glassy carbon electrode (MF/GCE) for the highly sensitive determination of uracil in biological fluids that can be used for diagnosis of decreased DPD activity. Due to the formation of the HgII-Uracil complex at the electrode surface, the accuracy of the measurement was not affected by the complicated matrices in biological fluids including human serum, plasma, and urine. The high sensitivity of the developed method results in a low limit of detection (≈1.3 nM) in human plasma samples, falling below the practical cut-off level of 15 ng mL-1 (≈0.14 μM). This threshold concentration is crucial for predicting 5-FU toxicity, as reported in buffer, and ≤1.15% in biological samples), and accuracy (recovery percentage close to 100%).
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Ozge Selcuk
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Mersin University, Faculty of Pharmacy, Department of Analytical Chemistry, 33169, Mersin, Turkey.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic.
| | - Didem Nur Unal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, 06110, Ankara, Turkey.
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Jan Jurica
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021; 192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes (NZs) are nanomaterials that mimic enzyme-like catalytic activity. They have attracted substantial attention due to their inherent physicochemical properties for use as promising alternatives to natural enzymes (NEs) in a variety of research fields. Particularly, in biosensing and bioassays, NZs have opened a new horizon to eliminate the intrinsic limitations of NEs, including their denaturation at extreme pH values and temperatures, poor reusability and recyclability, and high production costs. Moreover, the catalytic activity of NZs can be modulated in the preparation step by following an appropriate synthesis strategy. This review aims to gain insight into the potential substitution of NEs by NZs in biosensing and bioassays while considering both the pros and cons.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jiri Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-12843, Prague 2, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic.
| |
Collapse
|