1
|
Garg A, Basu S, Shetti NP, Bhattu M, Alodhayb AN, Pandiaraj S. Biowaste to bioenergy nexus: Fostering sustainability and circular economy. ENVIRONMENTAL RESEARCH 2024; 250:118503. [PMID: 38367840 DOI: 10.1016/j.envres.2024.118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.
Collapse
Affiliation(s)
- Anushka Garg
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India.
| | - Monika Bhattu
- Department of Chemistry, University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Application of nanomaterials in anaerobic digestion processes: A new strategy towards sustainable methane production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Silva AR, Alves MM, Pereira L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb Biotechnol 2022; 15:1073-1100. [PMID: 34586713 PMCID: PMC8966012 DOI: 10.1111/1751-7915.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022] Open
Abstract
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.
Collapse
Affiliation(s)
- Ana Rita Silva
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Maria Madalena Alves
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Luciana Pereira
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| |
Collapse
|
5
|
Special Issue on the Intensified Conversion of Organic Waste into Biogas. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anaerobic digestion is a sustainable technology used to produce renewable gas from organic wastes [...]
Collapse
|
6
|
Zhao P, Liu Y, Dou C, Zhu N, Wan P, Wang X. Study on the characteristics of dissolution and acid production in waste activated sludge: Focusing on the pretreatment of thermal-alkali with rhamnolipid. BIORESOURCE TECHNOLOGY 2021; 327:124796. [PMID: 33561792 DOI: 10.1016/j.biortech.2021.124796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
This paper studied the effect of thermal-alkali with rhamnolipid coupling pretreatment waste activated sludge (WAS) on the dissolution and acid production of organic matter. The results showed that when the dosage of rhamnolipid (RL) was 40 mg/g vs, the dissolution rate of soluble Chemical oxygen demand (SCOD) and soluble carbohydrate (SC) was the highest, and the concentration of soluble protein (SP), biopolymer and neutral low molecular substances was the highest. Three-dimensional fluorescence parallel factor analysis found that the addition of rhamnolipid promoted the formation of fulvic acids. When the dosage of rhamnolipid was 60 mg/g vs, the highest peak concentration of volatile fatty acids (VFAs) reached 3.5 days. The type of fermentation acid was butyric acid. The higher cracking rate and higher acid production rate showed that thermal-alkali with rhamnolipid had better acid production performance than thermal-alkali pretreatment sludge, but the amount of rhamnolipid affected the fermentation type.
Collapse
Affiliation(s)
- Penghe Zhao
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yuling Liu
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Chuanchuan Dou
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Niping Zhu
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Pengliang Wan
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xingliang Wang
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|