1
|
Nyawa S, Tchuente D, Fosso-Wamba S. COVID-19 vaccine hesitancy: a social media analysis using deep learning. ANNALS OF OPERATIONS RESEARCH 2022:1-39. [PMID: 35729983 PMCID: PMC9202977 DOI: 10.1007/s10479-022-04792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Hesitant attitudes have been a significant issue since the development of the first vaccines-the WHO sees them as one of the most critical global health threats. The increasing use of social media to spread questionable information about vaccination strongly impacts the population's decision to get vaccinated. Developing text classification methods that can identify hesitant messages on social media could be useful for health campaigns in their efforts to address negative influences from social media platforms and provide reliable information to support their strategies against hesitant-vaccination sentiments. This study aims to evaluate the performance of different machine learning models and deep learning methods in identifying vaccine-hesitant tweets that are being published during the COVID-19 pandemic. Our concluding remarks are that Long Short-Term Memory and Recurrent Neural Network models have outperformed traditional machine learning models on detecting vaccine-hesitant messages in social media, with an accuracy rate of 86% against 83%.
Collapse
Affiliation(s)
- Serge Nyawa
- Department of Information, Operations and Management Sciences, TBS Business School, 1 Place Alphonse Jourdain, 31068 Toulouse, France
| | - Dieudonné Tchuente
- Department of Information, Operations and Management Sciences, TBS Business School, 1 Place Alphonse Jourdain, 31068 Toulouse, France
| | - Samuel Fosso-Wamba
- Department of Information, Operations and Management Sciences, TBS Business School, 1 Place Alphonse Jourdain, 31068 Toulouse, France
| |
Collapse
|
2
|
Alamoodi AH, Zaidan BB, Al-Masawa M, Taresh SM, Noman S, Ahmaro IYY, Garfan S, Chen J, Ahmed MA, Zaidan AA, Albahri OS, Aickelin U, Thamir NN, Fadhil JA, Salahaldin A. Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy. Comput Biol Med 2021; 139:104957. [PMID: 34735945 PMCID: PMC8520445 DOI: 10.1016/j.compbiomed.2021.104957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
Abstract
A substantial impediment to widespread Coronavirus disease (COVID-19) vaccination is vaccine hesitancy. Many researchers across scientific disciplines have presented countless studies in favor of COVID-19 vaccination, but misinformation on social media could hinder vaccination efforts and increase vaccine hesitancy. Nevertheless, studying people's perceptions on social media to understand their sentiment presents a powerful medium for researchers to identify the causes of vaccine hesitancy and therefore develop appropriate public health messages and interventions. To the best of the authors' knowledge, previous studies have presented vaccine hesitancy in specific cases or within one scientific discipline (i.e., social, medical, and technological). No previous study has presented findings via sentiment analysis for multiple scientific disciplines as follows: (1) social, (2) medical, public health, and (3) technology sciences. Therefore, this research aimed to review and analyze articles related to different vaccine hesitancy cases in the last 11 years and understand the application of sentiment analysis on the most important literature findings. Articles were systematically searched in Web of Science, Scopus, PubMed, IEEEXplore, ScienceDirect, and Ovid from January 1, 2010, to July 2021. A total of 30 articles were selected on the basis of inclusion and exclusion criteria. These articles were formed into a taxonomy of literature, along with challenges, motivations, and recommendations for social, medical, and public health and technology sciences. Significant patterns were identified, and opportunities were promoted towards the understanding of this phenomenon.
Collapse
Affiliation(s)
- A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris (UPSI), Perak, Malaysia.
| | - B B Zaidan
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, ROC
| | - Maimonah Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Sahar M Taresh
- Department of Kindergarten Educational Psychology, Taiz University, Yemen
| | - Sarah Noman
- Department of Community Health, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Ibraheem Y Y Ahmaro
- Computer Science Department, College of Information Technology, Hebron University, Hebron, Palestine
| | - Salem Garfan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris (UPSI), Perak, Malaysia
| | - Juliana Chen
- The University of Sydney, Charles Perkins Centre, Discipline of Nutrition and Dietetics, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia; Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Australia; Healthy Weight Clinic, MQ Health, Macquarie University Hospital, Australia
| | - M A Ahmed
- Computer Science and Mathematics College, Tikrit University, Iraq
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris (UPSI), Perak, Malaysia
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris (UPSI), Perak, Malaysia
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria, 3010, Australia
| | - Noor N Thamir
- Department of Computer Science, University of Baghdad, Iraq
| | - Julanar Ahmed Fadhil
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
| | - Asmaa Salahaldin
- College of Graduate Studies, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Selecting the Suitable Resampling Strategy for Imbalanced Data Classification Regarding Dataset Properties. An Approach Based on Association Models. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class. This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples. Thus, the prediction model is unreliable although the overall model accuracy can be acceptable. Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class. However, their effectiveness depends on several factors mainly related to data intrinsic characteristics, such as imbalance ratio, dataset size and dimensionality, overlapping between classes or borderline examples. In this work, the impact of these factors is analyzed through a comprehensive comparative study involving 40 datasets from different application areas. The objective is to obtain models for automatic selection of the best resampling strategy for any dataset based on its characteristics. These models allow us to check several factors simultaneously considering a wide range of values since they are induced from very varied datasets that cover a broad spectrum of conditions. This differs from most studies that focus on the individual analysis of the characteristics or cover a small range of values. In addition, the study encompasses both basic and advanced resampling strategies that are evaluated by means of eight different performance metrics, including new measures specifically designed for imbalanced data classification. The general nature of the proposal allows the choice of the most appropriate method regardless of the domain, avoiding the search for special purpose techniques that could be valid for the target data.
Collapse
|
4
|
Prieto Santamaría L, Tuñas JM, Fernández Peces-Barba D, Jaramillo A, Cotarelo M, Menasalvas E, Conejo Fernández A, Arce A, Gil de Miguel A, Rodríguez González A. Influenza and Measles-MMR: two case study of the trend and impact of vaccine-related Twitter posts in Spanish during 2015-2018. Hum Vaccin Immunother 2021; 18:1-16. [PMID: 33662222 PMCID: PMC9128558 DOI: 10.1080/21645515.2021.1877597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social media, and in particularly Twitter, can be a resource of enormous value to retrieve information about the opinion of general population to vaccines. The increasing popularity of this social media has allowed to use its content to have a clear picture of their users on this topic. In this paper, we perform a study about vaccine-related messages published in Spanish during 2015-2018. More specifically, the paper has focused on two specific diseases: influenza and measles (and MMR as its vaccine). By also including an analysis about the sentiment expressed on the published tweets, we have been able to identify the type of messages that are published on Twitter with respect these two pathologies and their vaccines. Results showed that in contrary on popular opinions, most of the messages published are non-negative. On the other hand, the analysis showed that some messages attracted a huge attention and provoked peaks in the number of published tweets, explaining some changes in the observed trends.
Collapse
Affiliation(s)
- Lucia Prieto Santamaría
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Spain
| | - Juan Manuel Tuñas
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | | | | | - Manuel Cotarelo
- Global Medical and Scientific Affairs, MSD España, Madrid, Spain
| | - Ernestina Menasalvas
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Spain
| | | | | | - Angel Gil de Miguel
- Departamento de Especialidades Médicas y Salud Pública, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Alejandro Rodríguez González
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Spain
| |
Collapse
|