1
|
Chu WY, Tsia KK. EuniceScope: Low-Cost Imaging Platform for Studying Microgravity Cell Biology. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:204-211. [PMID: 38274779 PMCID: PMC10810312 DOI: 10.1109/ojemb.2023.3257991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 01/27/2024] Open
Abstract
Microgravity is proven to impact a wide range of human physiology, from stimulating stem cell differentiation to confounding cell health in bones, skeletal muscles, and blood cells. The research in this arena is progressively intensified by the increasing promises of human spaceflights. Considering the limited access to spaceflight, ground-based microgravity-simulating platforms have been indispensable for microgravity-biology research. However, they are generally complex, costly, hard to replicate and reconfigure - hampering the broad adoption of microgravity biology and astrobiology. To address these limitations, we developed a low-cost reconfigurable 3D-printed microscope coined EuniceScope to allow the democratization of astrobiology, especially for educational use. EuniceScope is a compact 2D clinostat system integrated with a modularized brightfield microscope, built upon 3D-printed toolbox. We demonstrated that this compact system offers plausible imaging quality and microgravity-simulating performance. Its high degree of reconfigurability thus holds great promise in the wide dissemination of microgravity-cell-biology research in the broader community, including Science, technology, engineering, and mathematics (STEM) educational and scientific community in the future.
Collapse
Affiliation(s)
- Wing Yan Chu
- University of Hong KongHong Kong
- University of TorontoTorontoONM5SCanada
| | - Kevin K. Tsia
- Department of Electrical and Electronic Engineering, Faculty of EngineeringUniversity of Hong KongHong Kong
| |
Collapse
|
2
|
Vashi A, Sreejith KR, Nguyen NT. Lab-on-a-Chip Technologies for Microgravity Simulation and Space Applications. MICROMACHINES 2022; 14:116. [PMID: 36677176 PMCID: PMC9864955 DOI: 10.3390/mi14010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Gravity plays an important role in the development of life on earth. The effect of gravity on living organisms can be investigated by controlling the magnitude of gravity. Most reduced gravity experiments are conducted on the Lower Earth Orbit (LEO) in the International Space Station (ISS). However, running experiments in ISS face challenges such as high cost, extreme condition, lack of direct accessibility, and long waiting period. Therefore, researchers have developed various ground-based devices and methods to perform reduced gravity experiments. However, the advantage of space conditions for developing new drugs, vaccines, and chemical applications requires more attention and new research. Advancements in conventional methods and the development of new methods are necessary to fulfil these demands. The advantages of Lab-on-a-Chip (LOC) devices make them an attractive option for simulating microgravity. This paper briefly reviews the advancement of LOC technologies for simulating microgravity in an earth-based laboratory.
Collapse
|
3
|
Ju Z, Thomas TN, Chiu YJ, Yamanouchi S, Yoshida Y, Abe JI, Takahashi A, Wang J, Fujiwara K, Hada M. Adaptation and Changes in Actin Dynamics and Cell Motility as Early Responses of Cultured Mammalian Cells to Altered Gravitational Vector. Int J Mol Sci 2022; 23:6127. [PMID: 35682810 PMCID: PMC9181735 DOI: 10.3390/ijms23116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Cultured mammalian cells have been shown to respond to microgravity (μG), but the molecular mechanism is still unknown. The study we report here is focused on molecular and cellular events that occur within a short period of time, which may be related to gravity sensing by cells. Our assumption is that the gravity-sensing mechanism is activated as soon as cells are exposed to any new gravitational environment. To study the molecular events, we exposed cells to simulated μG (SμG) for 15 min, 30 min, 1 h, 2 h, 4 h, and 8 h using a three-dimensional clinostat and made cell lysates, which were then analyzed by reverse phase protein arrays (RPPAs) using a panel of 453 different antibodies. By comparing the RPPA data from cells cultured at 1G with those of cells under SμG, we identified a total of 35 proteomic changes in the SμG samples and found that 20 of these changes took place, mostly transiently, within 30 min. In the 4 h and 8 h samples, there were only two RPPA changes, suggesting that the physiology of these cells is practically indistinguishable from that of cells cultured at 1 G. Among the proteins involved in the early proteomic changes were those that regulate cell motility and cytoskeletal organization. To see whether changes in gravitational environment indeed activate cell motility, we flipped the culture dish upside down (directional change in gravity vector) and studied cell migration and actin cytoskeletal organization. We found that compared with cells grown right-side up, upside-down cells transiently lost stress fibers and rapidly developed lamellipodia, which was supported by increased activity of Ras-related C3 botulinum toxin substrate 1 (Rac1). The upside-down cells also increased their migratory activity. It is possible that these early molecular and cellular events play roles in gravity sensing by mammalian cells. Our study also indicated that these early responses are transient, suggesting that cells appear to adapt physiologically to a new gravitational environment.
Collapse
Affiliation(s)
- Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Tamlyn N. Thomas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.N.T.); (J.-i.A.)
- Aab Cardiovascular Research Institute, University of Rochester Medical School, Rochester, NY 14642, USA;
| | - Yi-Jen Chiu
- Aab Cardiovascular Research Institute, University of Rochester Medical School, Rochester, NY 14642, USA;
| | - Sakuya Yamanouchi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (S.Y.); (Y.Y.); (A.T.)
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (S.Y.); (Y.Y.); (A.T.)
| | - Jun-ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.N.T.); (J.-i.A.)
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (S.Y.); (Y.Y.); (A.T.)
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Keigi Fujiwara
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.N.T.); (J.-i.A.)
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
4
|
Zhang Y, Richards JT, Hellein JL, Johnson CM, Woodall J, Sorenson T, Neelam S, Ruby AMJ, Levine HG. NASA's Ground-Based Microgravity Simulation Facility. Methods Mol Biol 2021; 2368:281-299. [PMID: 34647262 DOI: 10.1007/978-1-0716-1677-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogs have been widely used in space biology ground studies. Even though microgravity simulators do not produce all of the biological effects observed in the true microgravity environment, they provide alternative test platforms that are effective, affordable, and readily available to facilitate microgravity research. The Microgravity Simulation Support Facility (MSSF) at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC) has been established for conducting short duration experiments, typically less than 1 month, utilizing a variety of microgravity simulation devices for research at different gravity levels. The simulators include, but are not limited to, 2D Clinostats, 3D Clinostats, Random Positioning Machines, and Rotating Wall Vessels. In this chapter, we will discuss current MSSF capabilities, development concepts, and the physical characteristics of these microgravity simulators.
Collapse
Affiliation(s)
- Ye Zhang
- NASA John F. Kennedy Space Center, Merritt Island, FL, USA.
| | - Jeffery T Richards
- NASA John F. Kennedy Space Center, Merritt Island, FL, USA.,LASSO Contract, URS Federal Services, Inc., Germantown, MD, USA
| | | | - Christina M Johnson
- NASA John F. Kennedy Space Center, Merritt Island, FL, USA.,Universities Space Research Association, Washington, DC, USA
| | - Julia Woodall
- NASA John F. Kennedy Space Center, Merritt Island, FL, USA
| | - Tait Sorenson
- NASA John F. Kennedy Space Center, Merritt Island, FL, USA
| | - Srujana Neelam
- NASA John F. Kennedy Space Center, Merritt Island, FL, USA.,Universities Space Research Association, Washington, DC, USA
| | | | | |
Collapse
|
5
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|