1
|
Robertson H, Gresham IJ, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Illuminating the nanostructure of diffuse interfaces: Recent advances and future directions in reflectometry techniques. Adv Colloid Interface Sci 2024; 331:103238. [PMID: 38917595 DOI: 10.1016/j.cis.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Diffuse soft matter interfaces take many forms, from end-tethered polymer brushes or adsorbed surfactants to self-assembled layers of lipids. These interfaces play crucial roles across a multitude of fields, including materials science, biophysics, and nanotechnology. Understanding the nanostructure and properties of these interfaces is fundamental for optimising their performance and designing novel functional materials. In recent years, reflectometry techniques, in particular neutron reflectometry, have emerged as powerful tools for elucidating the intricate nanostructure of soft matter interfaces with remarkable precision and depth. This review provides an overview of selected recent developments in reflectometry and their applications for illuminating the nanostructure of diffuse interfaces. We explore various principles and methods of neutron and X-ray reflectometry, as well as ellipsometry, and discuss advances in their experimental setups and data analysis approaches. Improvements to experimental neutron reflectometry methods have enabled greater time resolution in kinetic measurements and elucidation of diffuse structure under shear or confinement, while innovation in analysis protocols has significantly reduced data processing times, facilitated co-refinement of reflectometry data from multiple instruments and provided greater-than-ever confidence in proposed structural models. Furthermore, we highlight some significant research findings enabled by these techniques, revealing the organisation, dynamics, and interfacial phenomena at the nanoscale. We also discuss future directions and potential advancements in reflectometry techniques. By shedding light on the nanostructure of diffuse interfaces, reflectometry techniques enable the rational design and tailoring of interfaces with enhanced properties and functionalities.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Soft Matter at Interfaces, Technical University of Darmstadt, Darmstadt D-64289, Germany
| | - Isaac J Gresham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
2
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
3
|
Bryant SJ, Garvey CJ, Darwish TA, Georgii R, Bryant G. Molecular interactions with bilayer membrane stacks using neutron and X-ray diffraction. Adv Colloid Interface Sci 2024; 326:103134. [PMID: 38518550 DOI: 10.1016/j.cis.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Lamellar unit cell reconstruction from neutron and X-ray diffraction data provides information about the disposition and position of molecules and molecular segments with respect to the bilayer. When supplemented with the judicious use of molecular deuteration, the technique probes the molecular interactions and conformations within the bilayer membrane and the water layer which constitute the crystallographic unit cell. The perspective is model independent, and potentially, with a higher degree of resolution than is available with other techniques. In the case of neutron diffraction the measurement consists of carefully normalised diffracted intensity under conditions of contrast variation of the water layer. The subsequent Fourier reconstruction of the unit cell is made using the phase information from variation of peak intensities with contrast. Although the phase problem is not as easily solved for the corresponding X-ray measurements, an intuitive approach can often suffice. Here we discuss the two complimentary techniques as probes of scattering length density profiles of a bilayer, and how such a perspective provides information about the location and orientation of molecules within or between lipid bilayers. Within the basic paradigm of lamellar phases this method has provided, for example, detailed insights into the location and interaction of cryoprotectants and stress proteins, of the mechanisms of actions of viral proteins, antimicrobial compounds and drugs, and the underlying structure of the stratum corneum. In this paper we review these techniques and provide examples of the systems that have been examined. We finish with a future outlook on the use of these techniques to improve our understanding of the interactions of membranes with biomolecules.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; Faculty of Science and Technology, University of Canberra, ACT 2617, Australia
| | - Robert Georgii
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia.
| |
Collapse
|
4
|
Lamolinairie J, Dollet B, Bridot JL, Bauduin P, Diat O, Chiappisi L. Probing foams from the nanometer to the millimeter scale by coupling small-angle neutron scattering, imaging, and electrical conductivity measurements. SOFT MATTER 2022; 18:8733-8747. [PMID: 36341841 DOI: 10.1039/d2sm01252a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid foams are multi-scale structures whose structural characterization requires the combination of very different techniques. This inherently complex task is made more difficult by the fact that foams are also intrinsically unstable systems and that their properties are highly dependent on the production protocol and sample container. To tackle these issues, a new device has been developed that enables the simultaneous time-resolved investigation of foams by small-angle neutron scattering (SANS), electrical conductivity, and bubbles imaging. This device allows the characterization of the foam and its aging from nanometer up to centimeter scale in a single experiment. A specific SANS model was developed to quantitatively adjust the scattering intensity from the dry foam. Structural features such as the liquid fraction, specific surface area of the Plateau borders and inter-bubble films, and thin film thickness were deduced from this analysis, and some of these values were compared with values extracted from the other applied techniques. This approach has been applied to a surfactant-stabilized liquid foam under free drainage and the underlying foam destabilization mechanisms were discussed with unprecedented detail. For example, the information extracted from the image analysis and SANS data allows for the first time to determine the disjoining pressure vs. thickness isotherm in a real, draining foam.
Collapse
Affiliation(s)
- Julien Lamolinairie
- Institut Max von Laue - Paul Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble, France.
| | - Benjamin Dollet
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Pierre Bauduin
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
| | - Leonardo Chiappisi
- Institut Max von Laue - Paul Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
5
|
Wang P, Geiger C, Kreuzer LP, Widmann T, Reitenbach J, Liang S, Cubitt R, Henschel C, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Water/Acetone Atmosphere: Modulation of Water Hydration and Co-nonsolvency-Triggered Film Contraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6934-6948. [PMID: 35609178 DOI: 10.1021/acs.langmuir.2c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2O or D2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2O or D2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, whereas the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.
Collapse
Affiliation(s)
- Peixi Wang
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Christina Geiger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Julija Reitenbach
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Suzhe Liang
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Robert Cubitt
- Institut-Laue-Langevin, 6 rue Jules Horowitz, Grenoble 38000, France
| | - Cristiane Henschel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Street 24-25, Potsdam-Golm 14476, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Street 24-25, Potsdam-Golm 14476, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselberg Street 69, Potsdam-Golm 14476, Germany
| | - Christine M Papadakis
- Fachgebiet Physik weicher Materie, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Street 1, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenberg Street 1, Garching 85748, Germany
| |
Collapse
|
6
|
Kreuzer LP, Geiger C, Widmann T, Wang P, Cubitt R, Hildebrand V, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Solvation Behavior of Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Mixed Water/Methanol Vapors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lucas P. Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christina Geiger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peixi Wang
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France
| | - Viet Hildebrand
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
7
|
Flexible Sample Environments for the Investigation of Soft Matter at the European Spallation Source: Part I—The In Situ SANS/DLS Setup. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As part of the development of the new European Spallation Source (ESS) in Lund (Sweden), which will provide the most brilliant neutron beams worldwide, it is necessary to provide different sample environments with which the potential of the new source can be exploited as soon as possible from the start of operation. The overarching goal of the project is to reduce the downtimes of the instruments related to changing the sample environment by developing plug and play sample environments for different soft matter samples using the same general carrier platform and also providing full software integration and control by just using unified connectors. In the present article, as a part of this endeavor, the sample environment for in situ SANS and dynamic light scattering measurements is introduced.
Collapse
|
8
|
Technical Specification of the Small-Angle Neutron Scattering Instrument SKADI at the European Spallation Source. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small-K Advanced DIffractometer (SKADI is a Small-Angle Neutron Scattering (SANS) instrument to be constructed at the European Spallation Source (ESS). SANS instruments allow investigations of the structure of materials in the size regime between Angstroms up to micrometers. As very versatile instruments, they usually cater to the scientific needs of communities, such as chemists, biologists, and physicists, ranging from material and food sciences to archeology. They can offer analysis of the micro- and mesoscopic structure of the samples, as well as an analysis of the spin states in the samples, for example, for magnetic samples. SKADI, as a broad range instrument, thus offers features, such as an extremely flexible space for the sample environment, to accommodate a wide range of experiments, high-flux, and optimized detector-collimation system to allow for an excellent resolution of the sample structure, short measurement times to be able to record the internal kinetics during a transition in the sample, as well as polarized neutron scattering. In this manuscript, we describe the final design for the construction of SKADI. All of the features and capabilities presented here are projected to be included into the final instrument when going into operation phase.
Collapse
|