1
|
Kilic ME, Arayici ME, Turan OE, Yilancioglu YR, Ozcan EE, Yilmaz MB. Diagnostic accuracy of machine learning algorithms in electrocardiogram-based sleep apnea detection: A systematic review and meta-analysis. Sleep Med Rev 2025; 81:102097. [PMID: 40349509 DOI: 10.1016/j.smrv.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.
Collapse
Affiliation(s)
- Mustafa Eray Kilic
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Oguzhan Ekrem Turan
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | | | - Emin Evren Ozcan
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| |
Collapse
|
2
|
Kolhar M, Alfridan MM, Siraj RA. AI-Driven Detection of Obstructive Sleep Apnea Using Dual-Branch CNN and Machine Learning Models. Biomedicines 2025; 13:1090. [PMID: 40426919 PMCID: PMC12108708 DOI: 10.3390/biomedicines13051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The purpose of this research is to compare and contrast the application of machine learning and deep learning methodologies such as a dual-branch convolutional neural network (CNN) model for detecting obstructive sleep apnea (OSA) from electrocardiogram (ECG) data. Methods: This approach solves the limitations of conventional polysomnography (PSG) and presents a non-invasive method for detecting OSA in its early stages with the help of AI. Results: The research shows that both CNN and dual-branch CNN models can identify OSA from ECG signals. The CNN model achieves validation and test accuracy of about 93% and 94%, respectively, whereas the dual-branch CNN model achieves 93% validation and 94% test accuracy. Furthermore, the dual-branch CNN obtains a ROC AUC score of 0.99, meaning that it is better at distinguishing between apnea and non-apnea cases. Conclusions: The results show that CNN models, especially the dual-branch CNN, are effective in apnea classification and better than traditional methods. In addition, our proposed model has the potential to be used as a reliable, non-invasive method for accurate OSA detection that is even better than the current state-of-the-art advanced methods.
Collapse
Affiliation(s)
- Manjur Kolhar
- Department of Health Information Management and Technology, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 36362, Saudi Arabia;
| | - Manahil Muhammad Alfridan
- Department of Health Information Management and Technology, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 36362, Saudi Arabia;
| | - Rayan A. Siraj
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 36362, Saudi Arabia
| |
Collapse
|
3
|
Zhou J, Li X, Xia Q, Yu L. Innovations in otolaryngology using LLM for early detection of sleep-disordered breathing. SLAS Technol 2025; 32:100278. [PMID: 40122382 DOI: 10.1016/j.slast.2025.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Sleep Disordered Breathing (SDB), including conditions like Obstructive Sleep Apnea (OSA), represents a major health concern, characterized by irregular airflow during sleep due to airway obstruction. SDB can result in serious health problems. Implementation of early intervention is vital whenever patient outcomes are to be considered. This research aims to advance research on otolaryngology using Machine Learning (ML) models, and Large Language Models (LLM) for identification of SDB using Electronic Health Record (HER). The approach proposes a hybrid ML framework combining the Dynamic Seagull Search algorithm-driven Large Language model (DSS-LLM). The extensive clinical dataset is used to train the model. It includes patient demographics, medical history, sleep habits, comorbidities, and physical measurements. Data pre-processing involves handling missing values, applying NLP techniques, and normalization. Feature extraction is done using Principal Component Analysis (PCA) to reduce the dimensionality of the hyperparameters and finally for selecting the best set of predictors. The extracted features are then used to train the proposed DSS-LLM model, which incorporates the DSS algorithm to optimize the LLM classifier, improving classification accuracy and model robustness. Subsequently, the idea of LLM is introduced for its application on textual clinical records comprising physicians' reports and patients' symptoms. The findings from an experiment suggest that the proposed model enhances the classification accuracy achieved to 98.91 %, precision attained by 98.9 %, recall achieved to 98.92 % and F-1 score attained by 98.58 % as compared to the models developed earlier. This research provides a novel solution to the screening of OSA at the pre-clinical level which involves hybrid machine learning models integrated with LLMs. This proposed framework is expected to boost clinical judgment and thereby increase better ophthalmology outcomes for patients.
Collapse
Affiliation(s)
- Jin Zhou
- Otolaryngology-Head and Neck Surgery/Sleep Medicine Center, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoqin Li
- Otolaryngology-Head and Neck Surgery/Sleep Medicine Center, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Qianjun Xia
- Shenzhen Guodian Technology Communication Co, Ltd, Software Center, Chengdu, Sichuan, PR China.
| | - Liangcai Yu
- Otolaryngology-Head and Neck Surgery/Sleep Medicine Center, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
4
|
Choudhury M, Tanvir M, Yousuf MA, Islam N, Uddin MZ. Explainable AI-driven scalogram analysis and optimized transfer learning for sleep apnea detection with single-lead electrocardiograms. Comput Biol Med 2025; 187:109769. [PMID: 39923592 DOI: 10.1016/j.compbiomed.2025.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Sleep apnea, a fatal sleep disorder causing repetitive respiratory cessation, requires immediate intervention due to neuropsychological issues. However, existing approaches such as polysomnography, considered the most reliable and accurate test to detect sleep apnea, frequently require multichannel ECG recordings and advanced feature extraction algorithms, significantly restricting their wider application. Deep learning has recently emerged as a viable method for detecting sleep apnea. Our study describes a unique method for detecting sleep apnea utilizing single-lead ECG signals and deep learning techniques. In our proposed method, we have employed the continuous wavelet transform to convert electrocardiogram (ECG) signals into scalograms, which allows us to capture both the time and frequency domains. To enhance the classification performance, we have implemented an optimized pre-trained GoogLeNet architecture as a transfer learning model. In this study, we have analyzed the PhysioNet Apnea ECG dataset, UCDDB dataset and the MIT-BIH polysomnographic dataset for training and evaluation for per-segment classification, to demonstrate the effectiveness of our approach. In our experiments, the proposed model achieves remarkable results, with an accuracy of 93.85%, sensitivity of 93.42%, specificity of 94.30%, and F1 score of 93.83% for the Apnea ECG dataset in per-segment classification. Our model excels on the UCDDB dataset with 87.20% accuracy, 80.99% sensitivity, 93.39% specificity, and an 86.34% F1-score. Furthermore, the model obtains 88.58% accuracy, 88.78% sensitivity, 88.38% specificity, and 88.61% F1 score on the MIT BIH polysomnographic dataset, showing its robust performance and balanced precision-recall trade-off. Afterwards, LIME, an explainable AI method, has been implemented to illustrate the insights responsible for predicting apnea or non apnea.
Collapse
Affiliation(s)
- Mahan Choudhury
- Department of ICT, Bangladesh University of Professionals, Mirpur Cantonment, Dhaka 1216, Bangladesh.
| | - Md Tanvir
- Department of ICT, Bangladesh University of Professionals, Mirpur Cantonment, Dhaka 1216, Bangladesh.
| | - Mohammad Abu Yousuf
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Nayeemul Islam
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh.
| | | |
Collapse
|
5
|
Garcia-Vicente C, Gutierrez-Tobal GC, Vaquerizo-Villar F, Martin-Montero A, Gozal D, Hornero R. SleepECG-Net: Explainable Deep Learning Approach With ECG for Pediatric Sleep Apnea Diagnosis. IEEE J Biomed Health Inform 2025; 29:1021-1034. [PMID: 39527413 DOI: 10.1109/jbhi.2024.3495975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagnosis. To simplify OSA diagnosis, deep learning (DL) algorithms have been developed using cardiac signals, but they often lack interpretability. Our study introduces a novel interpretable DL approach (SleepECG-Net) for directly estimating OSA severity in at-risk children. A combination of convolutional and recurrent neural networks (CNN-RNN) was trained on overnight electrocardiogram (ECG) signals. Gradient-weighted Class Activation Mapping (Grad-CAM), an eXplainable Artificial Intelligence (XAI) algorithm, was applied to explain model decisions and extract ECG patterns relevant to pediatric OSA. Accordingly, ECG signals from the semi-public Childhood Adenotonsillectomy Trial (CHAT, n = 1610) and Cleveland Family Study (CFS,n = 64), and the private University of Chicago (UofC, n = 981) databases were used. OSA diagnostic performance reached 4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC, and CFS, respectively. The proposal demonstrated improved performance with increased severity along with heightened cardiovascular risk. XAI findings highlighted the detection of established ECG features linked to OSA, such as bradycardia-tachycardia events and delayed ECG patterns during apnea/hypopnea occurrences, focusing on clusters of events. Furthermore, Grad-CAM heatmaps identified potential ECG patterns indicating cardiovascular risk, such as P, T, and U waves, QT intervals, and QRS complex variations. Hence, SleepECG-Net approach may improve pediatric OSA diagnosis by also offering cardiac risk factor information, thereby increasing clinician confidence in automated systems, and promoting their effective adoption in clinical practice.
Collapse
|
6
|
Wan C, Nnamdi MC, Shi W, Smith B, Purnell C, Wang MD. Advancing Sleep Disorder Diagnostics: A Transformer-Based EEG Model for Sleep Stage Classification and OSA Prediction. IEEE J Biomed Health Inform 2025; 29:878-886. [PMID: 40030422 DOI: 10.1109/jbhi.2024.3512616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Sleep disorders, particularly Obstructive Sleep Apnea (OSA), have a considerable effect on an individual's health and quality of life. Accurate sleep stage classification and prediction of OSA are crucial for timely diagnosis and effective management of sleep disorders. In this study, we develop a sequential network that enhances sleep stage classification by incorporating self-attention mechanisms and Conditional Random Fields (CRF) into a deep learning model comprising multi-kernel Convolutional Neural Networks (CNNs) and Transformer-based encoders. The self-attention mechanism enables the model to focus on the most discriminative features extracted from single-channel electroencephalography (EEG) recordings, while the CRF module captures the temporal dependencies between sleep stages, improving the model's ability to learn more plausible sleep stage sequences. Moreover, we explore the relationship between sleep stages and OSA severity by utilizing the predicted sleep stage features to train various regression models for Apnea-Hypopnea Index (AHI) prediction. Our experiments demonstrate an improved sleep stage classification performance of 78.7%, particularly on datasets with diverse AHI values, and highlight the potential of leveraging sleep stage information for monitoring OSA. By employing advanced deep learning techniques, we thoroughly explore the intricate relationship between sleep stages and sleep apnea, laying the foundation for more precise and automated diagnostics of sleep disorders.
Collapse
|
7
|
Giorgi L, Nardelli D, Moffa A, Iafrati F, Di Giovanni S, Olszewska E, Baptista P, Sabatino L, Casale M. Advancements in Obstructive Sleep Apnea Diagnosis and Screening Through Artificial Intelligence: A Systematic Review. Healthcare (Basel) 2025; 13:181. [PMID: 39857208 PMCID: PMC11764519 DOI: 10.3390/healthcare13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a prevalent yet underdiagnosed condition associated with a major healthcare burden. Current diagnostic tools, such as full-night polysomnography (PSG), pose a limited accessibility to diagnosis due to their elevated costs. Recent advances in Artificial Intelligence (AI), including Machine Learning (ML) and deep learning (DL) algorithms, offer novel potential tools for an accurate OSA screening and diagnosis. This systematic review evaluates articles employing AI-powered models for OSA screening and diagnosis in the last decade. METHODS A comprehensive electronic search was performed on PubMed/MEDLINE, Google Scholar, and SCOPUS databases. The included studies were original articles written in English, reporting the use of ML algorithms to diagnose and predict OSA in suspected patients. The last search was performed in June 2024. This systematic review is registered in PROSPERO (Registration ID: CRD42024563059). RESULTS Sixty-five articles, involving data from 109,046 patients, met the inclusion criteria. Due to the heterogeneity of the algorithms, outcomes were analyzed into six sections (anthropometric indexes, imaging, electrocardiographic signals, respiratory signals, and oximetry and miscellaneous signals). AI algorithms demonstrated significant improvements in OSA detection, with accuracy, sensitivity, and specificity often exceeding traditional tools. In particular, anthropometric indexes were most widely used, especially in logistic regression-powered algorithms. CONCLUSIONS The application of AI algorithms to OSA diagnosis and screening has great potential to improve patient outcomes, increase early detection, and lessen the load on healthcare systems. However, rigorous validation and standardization efforts must be made to standardize datasets.
Collapse
Affiliation(s)
- Lucrezia Giorgi
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
| | - Domiziana Nardelli
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Antonio Moffa
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Francesco Iafrati
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Simone Di Giovanni
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Ewa Olszewska
- Department of Otolaryngology, Sleep Apnea Surgery Center, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Peter Baptista
- ENT Department, Al Zahra Private Hospital Dubai, Dubai 23614, United Arab Emirates;
| | - Lorenzo Sabatino
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
| | - Manuele Casale
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
8
|
Elashmawi WH, Djellal A, Sheta A, Surani S, Aljahdali S. Machine Learning for Enhanced COPD Diagnosis: A Comparative Analysis of Classification Algorithms. Diagnostics (Basel) 2024; 14:2822. [PMID: 39767182 PMCID: PMC11674508 DOI: 10.3390/diagnostics14242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the United States, chronic obstructive pulmonary disease (COPD) is a significant cause of mortality. As far as we know, it is a chronic, inflammatory lung condition that cuts off airflow to the lungs. Many symptoms have been reported for such a disease: breathing problems, coughing, wheezing, and mucus production. Patients with COPD might be at risk, since they are more susceptible to heart disease and lung cancer. Methods: This study reviews COPD diagnosis utilizing various machine learning (ML) classifiers, such as Logistic Regression (LR), Gradient Boosting Classifier (GBC), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Random Forest Classifier (RFC), K-Nearest Neighbors Classifier (KNC), Decision Tree (DT), and Artificial Neural Network (ANN). These models were applied to a dataset comprising 1603 patients after being referred for a pulmonary function test. Results: The RFC has achieved superior accuracy, reaching up to 82.06% in training and 70.47% in testing. Furthermore, it achieved a maximum F score in training and testing with an ROC value of 0.0.82. Conclusions: The results obtained with the utilized ML models align with previous work in the field, with accuracies ranging from 67.81% to 82.06% in training and from 66.73% to 71.46% in testing.
Collapse
Affiliation(s)
- Walaa H. Elashmawi
- Department of Computer Science, Suez Canal University, Ismailia 41522, Egypt
- Department of Computer Science, Misr International University, Cairo 11828, Egypt
| | - Adel Djellal
- Department of Electronics, Electrotechnics, and Automation (EEA), National Higher School of Technology and Engineering, Annaba 23000, Algeria;
| | - Alaa Sheta
- Computer Science Department, Southern Connecticut State University, New Haven, CT 06515, USA;
| | - Salim Surani
- Department of Pharmacy & Medicine, Texas A&M University, College Station, TX 75428, USA;
| | - Sultan Aljahdali
- Computer Science Department, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
9
|
Wang Z, Pan X, Mei Z, Xu Z, Lv Y, Zhang Y, Guan C. ECGAN-Assisted ResT-Net Based on Fuzziness for OSA Detection. IEEE Trans Biomed Eng 2024; 71:2518-2527. [PMID: 38498752 DOI: 10.1109/tbme.2024.3378508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Growing attention has been paid recently to electrocardiogram (ECG) based obstructive sleep apnea (OSA) detection, with some progresses been made on this topic. However, the lack of data, low data quality, and incomplete data labeling hinder the application of deep learning to OSA detection, which in turn affects the overall generalization capacity of the network. METHODS To address these issues, we propose the ResT-ECGAN framework. It uses a one-dimensional generative adversarial network (ECGAN) for sample generation, and integrates it into ResT-Net for OSA detection. ECGAN filters the generated ECG signals by incorporating the concept of fuzziness, effectively increasing the amount of high-quality data. ResT-Net not only alleviates the problems caused by deepening the network but also utilizes multi-head attention mechanisms to parallelize sequence processing and extract more valuable OSA detection features by leveraging contextual information. RESULTS Through extensive experiments, we verify that ECGAN can effectively improve the OSA detection performance of ResT-Net. Using only ResT-Net for detection, the accuracy on the Apnea-ECG and private databases is 0.885 and 0.837, respectively. By adding ECGAN-generated data augmentation, the accuracy is increased to 0.893 and 0.848, respectively. CONCLUSION AND SIGNIFICANCE Comparing with the state-of-the-art deep learning methods, our method outperforms them in terms of accuracy. This study provides a new approach and solution to improve OSA detection in situations with limited labeled samples.
Collapse
|
10
|
Liu MH, Chien SY, Wu YL, Sun TH, Huang CS, Hsu KC, Hang LW. EfficientNet-based machine learning architecture for sleep apnea identification in clinical single-lead ECG signal data sets. Biomed Eng Online 2024; 23:57. [PMID: 38902671 PMCID: PMC11188209 DOI: 10.1186/s12938-024-01252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Our objective was to create a machine learning architecture capable of identifying obstructive sleep apnea (OSA) patterns in single-lead electrocardiography (ECG) signals, exhibiting exceptional performance when utilized in clinical data sets. METHODS We conducted our research using a data set consisting of 1656 patients, representing a diverse demographic, from the sleep center of China Medical University Hospital. To detect apnea ECG segments and extract apnea features, we utilized the EfficientNet and some of its layers, respectively. Furthermore, we compared various training and data preprocessing techniques to enhance the model's prediction, such as setting class and sample weights or employing overlapping and regular slicing. Finally, we tested our approach against other literature on the Apnea-ECG database. RESULTS Our research found that the EfficientNet model achieved the best apnea segment detection using overlapping slicing and sample-weight settings, with an AUC of 0.917 and an accuracy of 0.855. For patient screening with AHI > 30, we combined the trained model with XGBoost, leading to an AUC of 0.975 and an accuracy of 0.928. Additional tests using PhysioNet data showed that our model is comparable in performance to existing models regarding its ability to screen OSA levels. CONCLUSIONS Our suggested architecture, coupled with training and preprocessing techniques, showed admirable performance with a diverse demographic dataset, bringing us closer to practical implementation in OSA diagnosis. Trial registration The data for this study were collected retrospectively from the China Medical University Hospital in Taiwan with approval from the institutional review board CMUH109-REC3-018.
Collapse
Affiliation(s)
- Meng-Hsuan Liu
- Artificial Intelligence Center, China Medical University Hospital, No. 2, Yude Rd, North Dist, Taichung, Taiwan
| | - Shang-Yu Chien
- Artificial Intelligence Center, China Medical University Hospital, No. 2, Yude Rd, North Dist, Taichung, Taiwan
| | - Ya-Lun Wu
- Artificial Intelligence Center, China Medical University Hospital, No. 2, Yude Rd, North Dist, Taichung, Taiwan
| | - Ting-Hsuan Sun
- Artificial Intelligence Center, China Medical University Hospital, No. 2, Yude Rd, North Dist, Taichung, Taiwan
| | - Chun-Sen Huang
- Sleep Medicine Center, Department of Pulmonary and Critical Care Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung, Taiwan
| | - Kai-Cheng Hsu
- Artificial Intelligence Center, China Medical University Hospital, No. 2, Yude Rd, North Dist, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.
| | - Liang-Wen Hang
- Sleep Medicine Center, Department of Pulmonary and Critical Care Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung, Taiwan.
- Department of Respiratory Therapy, College of Health Care, China, Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Ose B, Sattar Z, Gupta A, Toquica C, Harvey C, Noheria A. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Curr Cardiol Rep 2024; 26:561-580. [PMID: 38753291 DOI: 10.1007/s11886-024-02062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI) is transforming electrocardiography (ECG) interpretation. AI diagnostics can reach beyond human capabilities, facilitate automated access to nuanced ECG interpretation, and expand the scope of cardiovascular screening in the population. AI can be applied to the standard 12-lead resting ECG and single-lead ECGs in external monitors, implantable devices, and direct-to-consumer smart devices. We summarize the current state of the literature on AI-ECG. RECENT FINDINGS Rhythm classification was the first application of AI-ECG. Subsequently, AI-ECG models have been developed for screening structural heart disease including hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, pulmonary hypertension, and left ventricular systolic dysfunction. Further, AI models can predict future events like development of systolic heart failure and atrial fibrillation. AI-ECG exhibits potential in acute cardiac events and non-cardiac applications, including acute pulmonary embolism, electrolyte abnormalities, monitoring drugs therapy, sleep apnea, and predicting all-cause mortality. Many AI models in the domain of cardiac monitors and smart watches have received Food and Drug Administration (FDA) clearance for rhythm classification, while others for identification of cardiac amyloidosis, pulmonary hypertension and left ventricular dysfunction have received breakthrough device designation. As AI-ECG models continue to be developed, in addition to regulatory oversight and monetization challenges, thoughtful clinical implementation to streamline workflows, avoiding information overload and overwhelming of healthcare systems with false positive results is necessary. Research to demonstrate and validate improvement in healthcare efficiency and improved patient outcomes would be required before widespread adoption of any AI-ECG model.
Collapse
Affiliation(s)
- Benjamin Ose
- The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Zeeshan Sattar
- Division of General and Hospital Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Amulya Gupta
- Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Program for AI & Research in Cardiovascular Medicine (PARC), The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Chris Harvey
- Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Program for AI & Research in Cardiovascular Medicine (PARC), The University of Kansas Medical Center, Kansas City, KS, USA
| | - Amit Noheria
- Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, KS, USA.
- Program for AI & Research in Cardiovascular Medicine (PARC), The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Kim J, Lim MH, Kim K, Yoon HJ. Continual learning framework for a multicenter study with an application to electrocardiogram. BMC Med Inform Decis Mak 2024; 24:67. [PMID: 38448921 PMCID: PMC11331660 DOI: 10.1186/s12911-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Deep learning has been increasingly utilized in the medical field and achieved many goals. Since the size of data dominates the performance of deep learning, several medical institutions are conducting joint research to obtain as much data as possible. However, sharing data is usually prohibited owing to the risk of privacy invasion. Federated learning is a reasonable idea to train distributed multicenter data without direct access; however, a central server to merge and distribute models is needed, which is expensive and hardly approved due to various legal regulations. This paper proposes a continual learning framework for a multicenter study, which does not require a central server and can prevent catastrophic forgetting of previously trained knowledge. The proposed framework contains the continual learning method selection process, assuming that a single method is not omnipotent for all involved datasets in a real-world setting and that there could be a proper method to be selected for specific data. We utilized the fake data based on a generative adversarial network to evaluate methods prospectively, not ex post facto. We used four independent electrocardiogram datasets for a multicenter study and trained the arrhythmia detection model. Our proposed framework was evaluated against supervised and federated learning methods, as well as finetuning approaches that do not include any regulation to preserve previous knowledge. Even without a central server and access to the past data, our framework achieved stable performance (AUROC 0.897) across all involved datasets, achieving comparable performance to federated learning (AUROC 0.901).
Collapse
Affiliation(s)
- Junmo Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Min Hyuk Lim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Jin Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.
- Medical Bigdata Research Center, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Raisa RA, Rodela AS, Yousuf MA, Azad A, Alyami SA, Liò P, Islam MZ, Pogrebna G, Moni MA. Deep and Shallow Learning Model-Based Sleep Apnea Diagnosis Systems: A Comprehensive Study. IEEE ACCESS 2024; 12:122959-122987. [DOI: 10.1109/access.2024.3426928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Affiliation(s)
- Roksana Akter Raisa
- Department of Information and Communication Technology, Bangladesh University of Professionals, Mirpur, Dhaka, Bangladesh
| | - Ayesha Siddika Rodela
- Department of Information and Communication Technology, Bangladesh University of Professionals, Mirpur, Dhaka, Bangladesh
| | - Mohammad Abu Yousuf
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Akm Azad
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, U.K
| | - Md Zahidul Islam
- School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW, Australia
| | - Ganna Pogrebna
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW, Australia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
14
|
Alazaidah R, Samara G, Aljaidi M, Haj Qasem M, Alsarhan A, Alshammari M. Potential of Machine Learning for Predicting Sleep Disorders: A Comprehensive Analysis of Regression and Classification Models. Diagnostics (Basel) 2023; 14:27. [PMID: 38201336 PMCID: PMC10802836 DOI: 10.3390/diagnostics14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Sleep disorder is a disease that can be categorized as both an emotional and physical problem. It imposes several difficulties and problems, such as distress during the day, sleep-wake disorders, anxiety, and several other problems. Hence, the main objective of this research was to utilize the strong capabilities of machine learning in the prediction of sleep disorders. In specific, this research aimed to meet three main objectives. These objectives were to identify the best regression model, the best classification model, and the best learning strategy that highly suited sleep disorder datasets. Considering two related datasets and several evaluation metrics that were related to the tasks of regression and classification, the results revealed the superiority of the MultilayerPerceptron, SMOreg, and KStar regression models compared with the other twenty three regression models. Furthermore, IBK, RandomForest, and RandomizableFilteredClassifier showed superior performance compared with other classification models that belonged to several learning strategies. Finally, the Function learning strategy showed the best predictive performance among the six considered strategies in both datasets and with respect to the most evaluation metrics.
Collapse
Affiliation(s)
- Raed Alazaidah
- Department of Data Science and AI, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan; (R.A.); (M.H.Q.)
| | - Ghassan Samara
- Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan;
| | - Mohammad Aljaidi
- Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan;
| | - Mais Haj Qasem
- Department of Data Science and AI, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan; (R.A.); (M.H.Q.)
| | - Ayoub Alsarhan
- Department of Information Technology, Faculty of Prince Al-Hussein Bin Abdullah II for Information Technology, The Hashemite University, Zarqa 13133, Jordan;
| | - Mohammed Alshammari
- Faculty of Computing and Information Technology, Northern Border University, Rafha 91431, Saudi Arabia
| |
Collapse
|
15
|
García-Vicente C, Gutiérrez-Tobal GC, Jiménez-García J, Martín-Montero A, Gozal D, Hornero R. ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis. Comput Biol Med 2023; 167:107628. [PMID: 37918264 PMCID: PMC11556022 DOI: 10.1016/j.compbiomed.2023.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.
Collapse
Affiliation(s)
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Jorge Jiménez-García
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Adrián Martín-Montero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - David Gozal
- Office of The Dean, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr, Huntington, WV, 25701, USA
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
16
|
Khandelwal S, Salankar N, Mian Qaisar S, Upadhyay J, Pławiak P. ECG based apnea detection by multirate processing hybrid of wavelet-empirical decomposition Hjorth features extraction and neural networks. PLoS One 2023; 18:e0293610. [PMID: 37917633 PMCID: PMC10621869 DOI: 10.1371/journal.pone.0293610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Sleep Apnea (SA) can cause health complications including heart stroke and neurological disorders. The Polysomnography (PSG) test can detect the severity of sleep disturbance. However, it is expensive and requires a dedicated sleep laboratory and expertise to examine the patients. Therefore, it is not available to a large population in developing countries. This leads to the development of cost-effective and automated patient examination methods for the detection of sleep apnea. This study suggests an approach of using the ECG signals to categorize sleep apnea. In this work, we have devised an original technique of feature space designing by intelligently hybridizing the multirate processing, a mix of wavelet-empirical mode decomposition (W-EMD), modes-based Hjorth features extraction, and Adam-based optimized Multilayer perceptron neural network (MLPNN) for automated categorization of apnea. A publicly available ECG dataset is used for evaluating the performance of the suggested approach. Experiments are performed for four different sub-bands of the considered ECG signals. For each selected sub-band, five "Intrinsic Mode Functions" (IMFs) are extracted. Onward, three Hjorth features: complexity, activity, and mobility are mined from each IMF. In this way, four feature sets are formed based on wavelet-driven selected sub-bands. The performance of optimized MLPNN, for the apnea categorization, is compared for each feature set. Five different evaluation parameters are used to assess the performance. For the same dataset, a systematic comparison with current state-of-the-artwork has been done. Results have shown a classification accuracy of 98.12%.
Collapse
Affiliation(s)
| | | | - Saeed Mian Qaisar
- Electrical and Computer Engineering Department, Effat University, Jeddah, Saudi Arabia
- CESI LINEACT, Lyon, France
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies Campus, Bidholi, Dehradun, India
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska, Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka, Gliwice, Poland
| |
Collapse
|
17
|
J RG, K D. Apnoea detection using ECG signal based on machine learning classifiers and its performances. J Med Eng Technol 2023; 47:344-354. [PMID: 38625408 DOI: 10.1080/03091902.2024.2336500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Sleep apnoea is a common disorder affecting sleep quality by obstructing the respiratory airway. This disorder can also be correlated to certain diseases like stroke, depression, neurocognitive disorder, non-communicable disease, etc. We implemented machine learning techniques for detecting sleep apnoea to make the diagnosis easier, feasible, convenient, and cost-effective. Electrocardiography signals are the main input used here to detect sleep apnoea. The considered ECG signal undergoes pre-processing to remove noise and other artefacts. Next to pre-processing, extraction of time and frequency domain features is carried out after finding out the R-R intervals from the pre-processed signal. The power spectral density is calculated by using the Welch method for extracting the frequency-domain features. The extracted features are fed to different machine learning classifiers like Support Vector Machine, Decision Tree, k-nearest Neighbour, and Random Forest, for detecting sleep apnoea and performances are analysed. The result shows that the K-NN classifier obtains the highest accuracy of 92.85% compared to other classifiers based on 10 extracted features. The result shows that the proposed method of signal processing and machine learning techniques can be reliable and a promising method for detecting sleep apnoea with a reduced number of features.
Collapse
Affiliation(s)
- Rolant Gini J
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Dhanalakshmi K
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
18
|
Arslan RS. Sleep disorder and apnea events detection framework with high performance using two-tier learning model design. PeerJ Comput Sci 2023; 9:e1554. [PMID: 37810361 PMCID: PMC10557519 DOI: 10.7717/peerj-cs.1554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023]
Abstract
Sleep apnea is defined as a breathing disorder that affects sleep. Early detection of sleep apnea helps doctors to take intervention for patients to prevent sleep apnea. Manually making this determination is a time-consuming and subjectivity problem. Therefore, many different methods based on polysomnography (PSG) have been proposed and applied to detect this disorder. In this study, a unique two-layer method is proposed, in which there are four different deep learning models in the deep neural network (DNN), gated recurrent unit (GRU), recurrent neural network (RNN), RNN-based-long term short term memory (LSTM) architecture in the first layer, and a machine learning-based meta-learner (decision-layer) in the second layer. The strategy of making a preliminary decision in the first layer and verifying/correcting the results in the second layer is adopted. In the training of this architecture, a vector consisting of 23 features consisting of snore, oxygen saturation, arousal and sleep score data is used together with PSG data. A dataset consisting of 50 patients, both children and adults, is prepared. A number of pre-processing and under-sampling applications have been made to eliminate the problem of unbalanced classes. Proposed method has an accuracy of 95.74% and 99.4% in accuracy of apnea detection (apnea, hypopnea and normal) and apnea types detection (central, mixed and obstructive), respectively. Experimental results demonstrate that patient-independent consistent results can be produced with high accuracy. This robust model can be considered as a system that will help in the decisions of sleep clinics where it is expected to detect sleep disorders in detail with high performance.
Collapse
|
19
|
Alramadeen W, Ding Y, Costa C, Si B. A Novel Sparse Linear Mixed Model for Multi-Source Mixed-Frequency Data Fusion in Telemedicine. IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 2023; 13:215-225. [PMID: 37635864 PMCID: PMC10454975 DOI: 10.1080/24725579.2023.2202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Digital health and telemonitoring have resulted in a wealth of information to be collected to monitor, manage, and improve human health. The multi-source mixed-frequency health data overwhelm the modeling capacity of existing statistical and machine learning models, due to many challenging properties. Although predictive analytics for big health data plays an important role in telemonitoring, there is a lack of rigorous prediction model that can automatically predicts patients' health conditions, e.g., Disease Severity Indicators (DSIs), from multi-source mixed-frequency data. Sleep disorder is a prevalent cardiac syndrome that is characterized by abnormal respiratory patterns during sleep. Although wearable devices are available to administrate sleep studies at home, the manual scoring process to generate the DSI remains a bottleneck in automated monitoring and diagnosis of sleep disorder. To address the multi-fold challenges for precise prediction of the DSI from high-dimensional multi-source mixed-frequency data in sleep disorder, we propose a sparse linear mixed model that combines the modified Cholesky decomposition with group lasso penalties to enable joint group selection of fixed effects and random effects. A novel Expectation Maximization (EM) algorithm integrated with an efficient Majorization Maximization (MM) algorithm is developed for model estimation of the proposed sparse linear mixed model with group variable selection. The proposed method was applied to the SHHS data for telemonitoring and diagnosis of sleep disorder and found that a few significant feature groups that are consistent with prior medical studies on sleep disorder. The proposed method also outperformed a few benchmark methods with the highest prediction accuracy.
Collapse
Affiliation(s)
- Wesam Alramadeen
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA 13902, USA
| | - Yu Ding
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA 13902, USA
| | - Carlos Costa
- IBM T. J. Watson Research Center, Yorktown Heights, NY 10510, USA
| | - Bing Si
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA 13902, USA
| |
Collapse
|
20
|
Wang Y, Shi W, Yeh CH. A Novel Measure of Cardiopulmonary Coupling During Sleep Based on the Synchrosqueezing Transform Algorithm. IEEE J Biomed Health Inform 2023; 27:1790-1800. [PMID: 37021914 DOI: 10.1109/jbhi.2023.3237690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This paper presents a novel method to quantify cardiopulmonary dynamics for automatic sleep apnea detection by integrating the synchrosqueezing transform (SST) algorithm with the standard cardiopulmonary coupling (CPC) method. METHODS Simulated data were designed to validate the reliability of the proposed method, with varying levels of signal bandwidth and noise contamination. Real data were collected from the Physionet sleep apnea database, consisting of 70 single-lead ECGs with expert-labeled apnea annotations on a minute-by-minute basis. Three different signal processing techniques applied to sinus interbeat interval and respiratory time series include short-time Fourier transform, continuous Wavelet transform, and synchrosqueezing transform, respectively. Subsequently, the CPC index was computed to construct sleep spectrograms. Features derived from such spectrogram were used as input to five machine- learning-based classifiers including decision trees, support vector machines, k-nearest neighbors, etc. Results: The simulation results showed that the SST-CPC method is robust to both noise level and signal bandwidth, outperforming Fourier-based and Wavelet-based approaches. Meanwhile, the SST-CPC spectrogram exhibited relatively explicit temporal-frequency biomarkers compared with the rest. Furthermore, by integrating SST-CPC features with common-used heart rate and respiratory features, accuracies for per-minute apnea detection improved from 72% to 83%, validating the added value of CPC biomarkers in sleep apnea detection. CONCLUSION The SST-CPC method improves the accuracy of automatic sleep apnea detection and presents comparable performances with those automated algorithms reported in the literature. SIGNIFICANCE The proposed SST-CPC method enhances sleep diagnostic capabilities, and may serve as a complementary tool to the routine diagnosis of sleep respiratory events.
Collapse
|
21
|
Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
A Review on the Applications of Time-Frequency Methods in ECG Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2023. [DOI: 10.1155/2023/3145483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The joint time-frequency analysis method represents a signal in both time and frequency. Thus, it provides more information compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electrophysiological studies. The current review provides comprehensive knowledge about different time-frequency methods and their applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea detection, biometric identification, emotion detection, and driver drowsiness detection. The paper also discusses the limitations of these methods. The review will form a reference for future researchers willing to conduct research in the same field.
Collapse
|
23
|
Kumar Tyagi P, Agrawal D. Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Moridian P, Shoeibi A, Khodatars M, Jafari M, Pachori RB, Khadem A, Alizadehsani R, Ling SH. Automatic diagnosis of sleep apnea from biomedical signals using artificial intelligence techniques: Methods, challenges, and future works. WIRES DATA MINING AND KNOWLEDGE DISCOVERY 2022; 12. [DOI: 10.1002/widm.1478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 01/03/2025]
Abstract
AbstractApnea is a sleep disorder that stops or reduces airflow for a short time during sleep. Sleep apnea may last for a few seconds and happen for many while sleeping. This reduction in breathing is associated with loud snoring, which may awaken the person with a feeling of suffocation. So far, a variety of methods have been introduced by researchers to diagnose sleep apnea, among which the polysomnography (PSG) method is known to be the best. Analysis of PSG signals is very complicated. Many studies have been conducted on the automatic diagnosis of sleep apnea from biological signals using artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods. This research reviews and investigates the studies on the diagnosis of sleep apnea using AI methods. First, computer aided diagnosis system (CADS) for sleep apnea using ML and DL techniques along with its parts including dataset, preprocessing, and ML and DL methods are introduced. This research also summarizes the important specifications of the studies on the diagnosis of sleep apnea using ML and DL methods in a table. In the following, a comprehensive discussion is made on the studies carried out in this field. The challenges in the diagnosis of sleep apnea using AI methods are of paramount importance for researchers. Accordingly, these obstacles are elaborately addressed. In another section, the most important future works for studies on sleep apnea detection from PSG signals and AI techniques are presented. Ultimately, the essential findings of this study are provided in the conclusion section.This article is categorized under:
Technologies > Artificial Intelligence
Application Areas > Data Mining Software Tools
Algorithmic Development > Biological Data Mining
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering BDAL Lab, K. N. Toosi University of Technology Tehran Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty Semnan University Semnan Iran
| | - Ram Bilas Pachori
- Department of Electrical Engineering Indian Institute of Technology Indore Indore India
| | - Ali Khadem
- Department of Biomedical Engineering Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Geelong Victoria Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT University of Technology Sydney (UTS) Sydney New South Wales Australia
| |
Collapse
|
25
|
Setiawan F, Lin CW. A Deep Learning Framework for Automatic Sleep Apnea Classification Based on Empirical Mode Decomposition Derived from Single-Lead Electrocardiogram. Life (Basel) 2022; 12:1509. [PMID: 36294943 PMCID: PMC9605343 DOI: 10.3390/life12101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Although polysomnography (PSG) is a gold standard tool for diagnosing sleep apnea (SA), it can reduce the patient's sleep quality by the placement of several disturbing sensors and can only be interpreted by a highly trained sleep technician or scientist. In recent years, electrocardiogram (ECG)-derived respiration (EDR) and heart rate variability (HRV) have been used to automatically diagnose SA and reduce the drawbacks of PSG. Up to now, most of the proposed approaches focus on machine-learning (ML) algorithms and feature engineering, which require prior expert knowledge and experience. The present study proposes an SA detection algorithm to differentiate a normal and apnea event using a deep-learning (DL) framework based on 1D and 2D deep CNN with empirical mode decomposition (EMD) of a preprocessed ECG signal. The EMD is ideally suited to extract essential components which are characteristic of the underlying biological or physiological processes. In addition, the simple and compact architecture of 1D deep CNN, which only performs 1D convolutions, and pretrained 2D deep CNNs, are suitable for real-time and low-cost hardware implementation. METHOD This study was validated using 7 h to nearly 10 h overnight ECG recordings from 33 subjects with an average apnea-hypopnea index (AHI) of 30.23/h originated from PhysioNet Apnea-ECG database (PAED). In preprocessing, the raw ECG signal was normalized and filtered using the FIR band pass filter. The preprocessed ECG signal was then decomposed using the empirical mode decomposition (EMD) technique to generate several features. Several important generated features were selected using neighborhood component analysis (NCA). Finally, deep learning algorithm based on 1D and 2D deep CNN were used to perform the classification of normal and apnea event. The synthetic minority oversampling technique (SMOTE) was also applied to evaluate the influence of the imbalanced data problem. RESULTS The segment-level classification performance had 93.8% accuracy with 94.9% sensitivity and 92.7% specificity based on 5-fold cross-validation (5fold-CV), meanwhile, the subject-level classification performance had 83.5% accuracy with 75.9% sensitivity and 88.7% specificity based on leave-one-subject-out cross-validation (LOSO-CV). CONCLUSION A novel and robust SA detection algorithm based on the ECG decomposed signal using EMD and deep CNN was successfully developed in this study.
Collapse
Affiliation(s)
- Febryan Setiawan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Che-Wei Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Medical Informatics, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
26
|
Detection of Sleep Apnea from Electrocardiogram and Pulse Oximetry Signals Using Random Forest. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sleep apnea (SA) is a common sleep disorder which could impair the human physiological system. Therefore, early diagnosis of SA is of great interest. The traditional method of diagnosing SA is an overnight polysomnography (PSG) evaluation. When PSG has limited availability, automatic SA screening with a fewer number of signals should be considered. The primary purpose of this study is to develop and evaluate a SA detection model based on electrocardiogram (ECG) and blood oxygen saturation (SpO2). We adopted a multimodal approach to fuse ECG and SpO2 signals at the feature level. Then, feature selection was conducted using the recursive feature elimination with cross-validation (RFECV) algorithm and random forest (RF) classifier used to discriminate between apnea and normal events. Experiments were conducted on the Apnea-ECG database. The introduced algorithm obtained an accuracy of 97.5%, a sensitivity of 95.9%, a specificity of 98.4% and an AUC of 0.992 in per-segment classification, and outperformed previous works. The results showed that ECG and SpO2 are complementary in detecting SA, and that the combination of ECG and SpO2 enhances the ability to diagnose SA. Therefore, the proposed method has the potential to be an alternative to conventional detection methods.
Collapse
|
27
|
Apnea Detection in Polysomnographic Recordings Using Machine Learning Techniques. Diagnostics (Basel) 2021; 11:diagnostics11122302. [PMID: 34943539 PMCID: PMC8700500 DOI: 10.3390/diagnostics11122302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Sleep disorders are diagnosed in sleep laboratories by polysomnography, a multi-parameter examination that monitors biological signals during sleep. The subsequent evaluation of the obtained records is very time-consuming. The goal of this study was to create an automatic system for evaluation of the airflow and SpO2 channels of polysomnography records, through the use of machine learning techniques and a large database, for apnea and desaturation detection (which is unusual in other studies). To that end, a convolutional neural network (CNN) was designed using hyperparameter optimization. It was then trained and tested for apnea and desaturation. The proposed CNN was compared with the commonly used k-nearest neighbors (k-NN) method. The classifiers were designed based on nasal airflow and blood oxygen saturation signals. The final neural network accuracy for apnea detection reached 84%, and that for desaturation detection was 74%, while the k-NN classifier reached accuracies of 83% and 64% for apnea detection and desaturation detection, respectively.
Collapse
|
28
|
Abstract
The proportional-integral-derivative controller is widely used in various industrial applications. But, in many noisy problems the strong methods are needed to optimize the proportional-integral-derivative parameters. In this paper, a novel method is introduced for adjusting the proportional-integral-derivative parameters through the model predictive control and generalized type-2 fuzzy-logic systems. The rules of suggested fuzzy system are online adjusted and the parameters of proportional-integral-derivative are tuned based on the fuzzy model such that a cost function to be minimized. The designed controller is applied on continuous stirred tank reactor and the performance is compared with other traditional approaches. The main advantages are that the accuracy is improved by online modeling and optimization and a predictive scheme is added to the conventional proportional-integral-derivative controller.
Collapse
|