1
|
Klemm S, Freidank-Pohl C, Bauer L, Mantouvalou I, Simon U, Fleck C. Hierarchical structure and chemical composition of complementary segments of the fruiting bodies of Fomes fomentarius fungi fine-tune the compressive properties. PLoS One 2024; 19:e0304614. [PMID: 38870218 PMCID: PMC11175439 DOI: 10.1371/journal.pone.0304614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.
Collapse
Affiliation(s)
- Sophie Klemm
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Fachgebiet Werkstofftechnik/Chair of Materials Science & Engineering, Berlin, Germany
| | - Carsten Freidank-Pohl
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Berlin, Germany
| | - Leona Bauer
- Helmholtz-Zentrum Berlin, Berlin, Germany
- Technische Universität Berlin, Faculty II Mathematics and Natural Sciences, BLiX, Institute for Optics and Atomic Physics, Analytical X-ray physics, Berlin, Germany
| | - Ioanna Mantouvalou
- Helmholtz-Zentrum Berlin, Berlin, Germany
- Technische Universität Berlin, Faculty II Mathematics and Natural Sciences, BLiX, Institute for Optics and Atomic Physics, Analytical X-ray physics, Berlin, Germany
| | - Ulla Simon
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Berlin, Germany
| | - Claudia Fleck
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Fachgebiet Werkstofftechnik/Chair of Materials Science & Engineering, Berlin, Germany
| |
Collapse
|
2
|
Asrahwi MA, Rosman N'A, Shahri NNM, Santos JH, Kusrini E, Thongratkaew S, Faungnawakij K, Hassan S, Mahadi AH, Usman A. Solid-state mechanochemical synthesis of chitosan from mud crab (Scylla serrata) chitin. Carbohydr Res 2023; 534:108971. [PMID: 37862856 DOI: 10.1016/j.carres.2023.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
This study presents a method for solvent-free mechanochemical synthesis of chitosan from chitin, sourced from the shells of mud crabs (Scylla serrata). The procedure involves a sequence of demineralization and deproteinization to extract chitin from the crab shells, followed by mechanochemical deacetylation. The chitin was deacetylated by grinding it as a solid blend with sodium hydroxide (NaOH) using a stainless steel mortar and pestle. After grinding, chitosan is isolated from the blend by repetitive washing and centrifugation. The chitosan product is then characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. These characterization techniques confirm the successful deacetylation of chitin to form chitosan. A high degree of deacetylation (DD) is achieved when the weight ratio of NaOH to chitin is 1:1 or higher, implying that the DD value can be enhanced by increasing this weight ratio. The mechanochemical reaction mechanism involves the hydroxyl groups on the NaOH particles reacting with the acetamide groups of the chitin strands, yielding solid chitosan and sodium acetate. This mechanochemical deacetylation approach is more practical than the conventional heterogeneous deacetylation in strong basic solutions, since it could suppress depolymerization of the resulting chitosan and requires significantly less base. This makes it a promising method for large-scale industrial applications.
Collapse
Affiliation(s)
- Mimi Asyiqin Asrahwi
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Nurul 'Aqilah Rosman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Nurulizzatul Ningsheh M Shahri
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Jose Hernandez Santos
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Eny Kusrini
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, 16424, Depok, Indonesia
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Salma Hassan
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Abdul Hanif Mahadi
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| |
Collapse
|
3
|
do Amaral Sobral PJ, Gebremariam G, Drudi F, De Aguiar Saldanha Pinheiro AC, Romani S, Rocculi P, Dalla Rosa M. Rheological and Viscoelastic Properties of Chitosan Solutions Prepared with Different Chitosan or Acetic Acid Concentrations. Foods 2022; 11:2692. [PMID: 36076877 PMCID: PMC9455163 DOI: 10.3390/foods11172692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Chitosan (Ch) is a partially crystalline biopolymer, insoluble in pure water but soluble in acid solutions. It has attracted interest from researchers to prepare solutions using different acid types and concentrations. This research aims to study both the effect of chitosan (Ch) or acetic acid (Ac) concentrations, at different temperatures, on rheological and viscoelastic properties of Ch solutions. To study the effect of Ch, solutions were prepared with 0.5−2.5 g Ch/100 g of solution and Ac = 1%, whereas to study the effect of Ac, the solutions were prepared with 2.0 g of Ch/100 g of solution and Ac = 0.2−1.0%. Overall, all analyzed solutions behaved as pseudoplastic fluid. The Ch strongly affected rheological properties, the consistency index (K) increased and the index flow behavior (n) decreased as a function of Ch. The activation energy, defined as the energy required for the molecule of a fluid to move freely, was low for Ch = 0.5%. The effect of Ac was less evident. Both K and n varied according to a positive and negative, respectively, parabolic model as a function of Ac. Moreover, all solutions, irrespective of Ch and Ac, behaved as diluted solutions, with G” > G’. The relaxation exponent (n”) was always higher than 0.5, confirming that these systems behaved as a viscoelastic liquid. This n” increased with Ch, but it was insensitive to Ac, being slightly higher at 45 °C.
Collapse
Affiliation(s)
- Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, Sao Paulo 05508-080, SP, Brazil
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Gebremedhin Gebremariam
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Federico Drudi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | | | - Santina Romani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| |
Collapse
|
4
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin. Polymers (Basel) 2022; 14:polym14153139. [PMID: 35956654 PMCID: PMC9371181 DOI: 10.3390/polym14153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The application of α-mangostin (AMG) in breast cancer research has wide intentions. Chitosan-based nanoparticles (CSNPs) have attractive prospects for developing anticancer drugs, especially in their high flexibility for modification to enhance their anticancer action. This research aimed to study the impact of depolymerized chitosan (CS) on the cytotoxicity enhancement of AMG in MCF-7 breast cancer cells. CSNPs effectivity depends on size, shape, crystallinity degree, and charge surface. Modifying CS molecular weight (MW) is expected to influence CSNPs’ characteristics, impacting size, shape, crystallinity degree, and charge surface. CSNPs are developed using the method of ionic gelation with sodium tripolyphosphate (TPP) as a crosslinker and spray pyrolysis procedure. Nanoparticles’ (NPs) sizes vary from 205.3 ± 81 nm to 450.9 ± 235 nm, ZP charges range from +10.56 mV to +51.56 mV, and entrapment efficiency from 85.35% to 90.45%. The morphology of NPs are all the same spherical forms. In vitro release studies confirmed that AMG–Chitosan–High Molecular Weight (AMG–CS–HMW) and AMG–Chitosan–Low Molecular Weight (AMG–CS–LMW) had a sustained-release system profile. MW has a great influence on surface, drug release, and cytotoxicity enhancement of AMG in CSNPs to MCF-7 cancer cells. The preparations AMG–CS–HMW and AMG–CS–LMW NPs considerably enhanced the cytotoxicity of MCF-7 cells with IC50 values of 5.90 ± 0.08 µg/mL and 4.90 ± 0.16 µg/mL, respectively, as compared with the non-nano particle formulation with an IC50 of 8.47 ± 0.29 µg/mL. These findings suggest that CSNPs can enhance the physicochemical characteristics and cytotoxicity of AMG in breast cancer treatment.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
5
|
Bikmurzin R, Bandzevičiūtė R, Maršalka A, Maneikis A, Kalėdienė L. FT-IR Method Limitations for β-Glucan Analysis. Molecules 2022; 27:molecules27144616. [PMID: 35889491 PMCID: PMC9318380 DOI: 10.3390/molecules27144616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using strong chemicals, such as alkalis or acids. Analysis of β-glucans by FT-IR and NMR spectroscopy in solid state is superior to analysis in solution as it allows researchers to study the preserved structure of the extracted polysaccharides. FT-IR spectroscopy was used in this study to make side-by-side comparison analysis of hot water extracted β-glucans from different yeast sources. NMR spectroscopy was used to confirm findings made by FT-IR spectroscopy. Extracted β-glucans exhibit characteristic structure of β-1,3/1,6-linked glucans with noticeable levels of proteins, possibly in a form of oligopeptides, chitin and other impurities. β-glucans obtained from C. guilliermondii, P. pastoris and S. pastorianus exhibited higher protein content. Differences in mannan, chitin and α-glucan content were also observed; however, the species-specific structure of obtained β-glucans could not be confirmed without additional studies. Structural analysis of high molecular weight β-glucans in solid state by FT-IR spectroscopy is difficult or limited due to band intensity changes and overlapping originating from different molecules.
Collapse
Affiliation(s)
- Ruslan Bikmurzin
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
- Department of Medical Technology and Dietethics, Faculty of Health Care, Vilnius University of Applied Sciences, Didlaukio str. 45, LT-08303 Vilnius, Lithuania
- Correspondence:
| | - Rimantė Bandzevičiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Arūnas Maršalka
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Andrius Maneikis
- Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10221 Vilnius, Lithuania;
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|