Walayat N, Liu J, Nawaz A, Aadil RM, López-Pedrouso M, Lorenzo JM. Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives.
Antioxidants (Basel) 2022;
11:486. [PMID:
35326135 PMCID:
PMC8944868 DOI:
10.3390/antiox11030486]
[Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022] Open
Abstract
Texture is an important parameter in determining the quality characteristics and consumer acceptability of seafood and fish protein-based products. The addition of food-based additives as antioxidants (monosaccharides, oilgosaccharides, polysaccharides and protein hydrolysates) in surimi and other seafood products has become a promising trend at an industrial scale. Improvement in gelling, textural and structural attributes of surimi gel could be attained by inhibiting the oxidative changes, protein denaturation and aggregation with these additives along with new emerging processing techniques. Moreover, the intermolecular crosslinking of surimi gel can be improved with the addition of different food hydrocolloid-based antioxidants in combination with modern processing techniques. The high-pressure processing (HPP) technique with polysaccharides can develop surimi gel with better physicochemical, antioxidative, textural attributes and increase the gel matrix than conventional processing methods. The increase in protein oxidation, denaturation, decline in water holding capacity, gel strength and viscoelastic properties of surimi gel can be substantially improved by microwave (MW) processing. The MW, ultrasonication and ultraviolet (UV) treatments can significantly increase the textural properties (hardness, gumminess and cohesiveness) and improve the antioxidative properties of surimi gel produced by different additives. This study will review potential opportunities and primary areas of future exploration for high-quality surimi gel products. Moreover, it also focuses on the influence of different antioxidants as additives and some new production strategies, such as HPP, ultrasonication, UV and MW and ohmic processing. The effects of additives in combination with different modern processing technologies on surimi gel texture are also compared.
Collapse